NEWS BULLETIN OF NEPAL GEOLOGICAL SOCIETY

NEPAL GEOLOGICAL SOCIETY
(Estd. 1980)
P.O. Box 231, Kathmandu, Nepal
Email: ngs@wlink.com.np
NEPAL GEOLOGICAL SOCIETY
NINETH EXECUTIVE COMMITTEE
1996 - 1998

President
Dr. Bishal Nath Upreti
Department of Geology, Tribhuvan University
Tri-Chandra Campus, Ghantaghar, Kathmandu, Nepal
Tel.: 977-1-416386 (Res.)

Vice-President
Mr. Jagdishwar N. Shrestha
Department of Mines and Geology
Lainchaur, Kathmandu, Nepal
Tel.: 977-1-415064 (Res.)

Secretary
Mr. Devi Nath Subedi
Petroleum Exploration Promotion Project
Department of Mines and Geology
Kathmandu, Nepal
Tel.: 977-1-274788 (Res.)

Joint-Secretary
Mr. Dilip Sadaula
Electricity Development Centre
Anamnagar, Kathmandu, Nepal
Tel.: 977-1-253360 (Off.)

Treasurer
Mr. Mukunda Raj Paudel
Department of Geology, Tribhuvan University
Tri-Chandra Campus, Ghantaghar, Kathmandu, Nepal
Tel.: 977-1-428635 (Res.)

Members

Mr. Radha Krishna Karki
Department of Mines and Geology
Lainchaur, Kathmandu, Nepal
Tel.: 977-1-277787 (Res.)

Mr. Kaustub Mani Nepal
Nepal Electricity Authority
Kathmandu, Nepal
Tel.: 977-1-416267 (Res.)

Mr. Mahendra Singh
Groundwater Resources Development Project
Babar Mahal, Kathmandu, Nepal
Tel.: 977-1-416267 (Res.)

Mr. Madhab Acharya
Water Energy Commission Secretariat
Singha Durbar, Kathmandu, Nepal
Tel.: 977-1-227699 (Off.)

Immediate Past President: Krishna Prasad Kaphle
Department of Mines and Geology
Lainchaur, Kathmandu, Nepal
Tel.: 977-1-415320 (Res.)
Editorial

The Editorial Board on behalf of the Nepal Geological Society extends best wishes to all on the auspicious occasion of the happy new year 2055. The Editorial Board of the Nepal Geological Society is very happy to publish the new issue of NGS News Bulletin Volume 15. In addition to regular publication of the Journal of Nepal Geological Society, it is another important publication, which provides information about the role of geoscience in the infrastructure development, environmental protection, natural disaster mitigation, proper exploitation and use of mineral and water resources, etc. In this issue, it has been attempted to give information in brief about the various activities and events organised by the Society in the last one year time. The bulletin also includes few abstracts and papers presented in IDINDR Day on 6 October 1997 and some popular articles of common interest.

The activities of NGS is increasing year after years. Consequently, more materials are included to make the Bulletin popular not only among the members of the Society but also to the wider range of professionals within Nepal and abroad. It also includes popular geoscientific articles and other information on relevant topics.

Since last year, the form of the Bulletin is significantly changed. This year, we tried our best to improve its quality and are committed to increase its circulation in Nepal and abroad.

The Editorial Board expresses sincere thanks to all who have helped in various ways to bring out this volume. The Board is also grateful to all the advertisers, without whose support it would have been very difficult to bring out this publication.
LIST OF PUBLICATION OF NEPAL GEOLOGICAL SOCIETY

15*. Journal of Nepal Geological Society, vol. 4 (Special Issue), June, 1984*
18*. Journal of Nepal Geological Society, vol. 2 (Special Issue), May, 1982*

* Out of print (xerox copy available on request).

Price for each volume: Non-members/Libraries: (Excluding postal charge)
Volumes 11 (special issue), 14 (special issue) and 16 (Special Issue): US$ 12.00
Volumes 10, 13 and 15: US$ 10.00
Volumes 2 (special issue) and 4 (special issue) (xerox copy): US$ 15.00
Volumes 1 (No.1), 1 (No.2), and 3 (1&2) (xerox copy): US$ 5.00
Volumes 2(1), 2(2), 4(1&2), 5 (1), 6,7, 7 (special issue), 8 and 9: US$ 5.00
Postal charge for each volume (by airmail) to US/Japan/Europe: US$ 7.00
# CONTENTS

<table>
<thead>
<tr>
<th>Items</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editorial</td>
<td></td>
</tr>
<tr>
<td>NGS News</td>
<td></td>
</tr>
<tr>
<td>Nepali Geoscience Society News</td>
<td>1</td>
</tr>
<tr>
<td>Nepali Geoscience Society Annual Report</td>
<td>5</td>
</tr>
<tr>
<td>Annual Report by Mr. D. N. Subedi, Nepal Geological Society</td>
<td>5</td>
</tr>
<tr>
<td>కాలా: కోవాశ్యాం భీముడువరచ పిడించును ప్రస్తుత వార్షిక కార్యక్రమం</td>
<td>9</td>
</tr>
<tr>
<td>కాలా: కోవాశ్యాం భీముడువరచ పిడించును ప్రస్తుత వార్షిక కార్యక్రమం</td>
<td>9</td>
</tr>
<tr>
<td>Auditor's Financial Report 2053-54</td>
<td>11</td>
</tr>
<tr>
<td>Auditor's Financial Report 2053-54</td>
<td>11</td>
</tr>
<tr>
<td>International Decade for Natural Disaster Reduction</td>
<td></td>
</tr>
<tr>
<td>IDNDR-Day, October 6, 1997</td>
<td>17</td>
</tr>
<tr>
<td>Welcome Speech by Dr. B.N. Upreti, President, Nepal Geological Society</td>
<td>19</td>
</tr>
<tr>
<td>Speech delivered by Mr. R.R. Pokharel, Secretary, Ministry of Home, HMG/Nepal</td>
<td>20</td>
</tr>
<tr>
<td>Speech delivered by Jnan Kaji Shakya, Joint Secretary, Ministry of Home, HMG/Nepal</td>
<td>23</td>
</tr>
<tr>
<td>Vote of thanks by D.N. Subedi, Secretary, Nepal Geological Society</td>
<td>25</td>
</tr>
<tr>
<td>Prakritik Prakop Nuyikikaran Vigyam opar karshita yoddhi</td>
<td>26</td>
</tr>
<tr>
<td>Abstracts and papers presented at the National Meeting cum Seminar on</td>
<td></td>
</tr>
<tr>
<td>&quot;Natural Disaster Reduction in Nepal: Experiences and Challenges&quot;</td>
<td></td>
</tr>
<tr>
<td>Disaster Management Training in Nepal: Experience and Challenge</td>
<td>27</td>
</tr>
<tr>
<td>Singh Raj Upreti</td>
<td>27</td>
</tr>
<tr>
<td>A farming problem in the Nepalese hills and some insights into the</td>
<td></td>
</tr>
<tr>
<td>traditional technique of management: experiences from the Bagmati</td>
<td>27</td>
</tr>
<tr>
<td>Watershed Area</td>
<td></td>
</tr>
<tr>
<td>Madhukar Upadhya</td>
<td></td>
</tr>
<tr>
<td>Disaster Management in Nepal: Issues and Challenges</td>
<td>31</td>
</tr>
<tr>
<td>Sushil J. B. Rana</td>
<td></td>
</tr>
<tr>
<td>Controlling Vehicular Pollution in the Kathmandu Valley?</td>
<td>32</td>
</tr>
<tr>
<td>K. M. Joshi</td>
<td></td>
</tr>
<tr>
<td>A guideline for landslide investigation: an experience from</td>
<td>32</td>
</tr>
<tr>
<td>DPTC Model Sites</td>
<td></td>
</tr>
<tr>
<td>A. K. Karna</td>
<td></td>
</tr>
</tbody>
</table>
- Soil erosion problems in the Midland of Nepal with reference to the Trisuli model site, Nuwakot district, central Nepal
  - D. Higaki, K. K. Karki and C. S. Gautam
- Pollution of river systems in Kathmandu Valley
  - Mohan Singh Khadka and Mani Gopal Jha
- Database on disaster management capabilities in Nepal
  - K. P. Kaphle and M. Nakarmi
- Kathmandu Valley Earthquake Risk Management Project (KVERMP) - an introduction
- Tsho Rolpa Glacier Lake
  - P. K. Mool
- Disasters in Butwal, western Nepal
  - Rabindra Thanjou

Training cum Workshop on Natural Disaster Reduction
(9-10 December, 1997)


- Welcome Speech by Dr. B.N. Upreti, President, Nepal Geological Society
- Inaugural Speech by Rt. Honorable Mr. Beni Bahadur Karki, Chairman of National Assembly
- Citation to Mr. P.B. Malla
- समानित सबक्ष श्री पुष्पभक्त मल्ले समानित सबक्ष तत्त्व प्राप गर्दी दिनुमको मन्त्र

लेखकहुँ र:
- Geologist's expertise going to the waste
  - Dipendra Nath Sharma
- Earth system science for the 21st Century: towards truly sustainable development
  - W. S. Fyfe
- समस्तै, समस्तै बीचको नेपाल वातावरण परकारिता
  - मोहन मेनाली

New Members of Nepal Geological Society

Bio-data of Hon. Members of Nepal Geological Society

I. Dr. Chandra Kant Sharma
II. Mr. Puspa Bhakta Malla

Obituary
The 18th Annual General Body Meeting of the Nepal Geological Society was held on 12th September 1997 (29 Bhadra 2054) at the conference hall of Hotel Classic at Kathmandu. It was attended by most of its members. In the beginning, Dr. B.N. Upreti, the President of NGS delivered a welcome speech. Mr. D.N. Subedi, the Secretary and Mr. Mukund Raj Poudyal, the Treasurer of NGS presented the annual report and financial report, respectively. It was followed by the active participation in the discussion on various important points and issues raised by the members of the Society.

The Nepal Geological Society in cooperation with HMG/Ministry of Home, Water Induced Disaster Prevention Technical Centre (DPTC) and UNDP/Nepal successfully organised a one-day National Meeting cum Seminar on “Natural Disaster Reduction in Nepal: Experience and Challenges” in the auditorium of Russian Cultural Centre, Kathmandu on 6th October 1997 to commemorate the UN declared International Decade for Natural Disaster Reduction (IDNDR) Day 1997. It was attended by more than 250 persons involved in various disciplines. The inaugural session was chaired by Mr. Keshab Shapit, the Mayor of Kathmandu Metropolitan City. Mr. R.R. Pokharel, Secretary Ministry of Home was the Chief Guest who inaugurated the seminar and delivered an inaugural speech.

Nepal Geological Society in collaboration with the Ministry of Education, UNDP Nepal, Lutheran World Service, Disaster Preparedness Project and National Society for Earthquake Technology Nepal (N-SET Nepal) organized second time a two-day workshop cum training to the high school teachers of Kathmandu Valley on “Natural Disaster Reduction” on 9-10 December 1997. The training was participated by 93 school teachers and 7 officers from the Ministry of Education and Kathmandu Municipality. The training was inaugurated by Dr. C.K. Sharma, Hon. Member of NGS and Academician RONAST. The inaugural session was chaired by Mr. Chuman Singh Basnet, Joint Secretary, Ministry of Education. In the training programme, information about the geology of Nepal Himalaya, types of disasters, disaster management capabilities in Nepal and possibilities of reduction of the effects, preparedness, relief and rehabilitation was given to the trainees.

Nepal Geological Society in cooperation with Nepal Engineers’ Association jointly organised a one-day Technical Workshop on “Tsho-Rolpa Glacier Lake” in the Auditorium of Russian Cultural Centre, Kamal Pokhari, Kathmandu on 28 July 1997. Experts on this field presented their papers and provided the information about it. It was attended by more than 200 professionals from different organisations.

In the beginning of the workshop Mr. Chet Prasad Bhattacharai, President, Nepal Engineers’ Association delivered welcome speech. It was followed by Technical Session. This session was chaired by Dr. Binayak Bhadra, Member, National Planning Commission.

The Technical Session of the workshop was started by an introductory lecture on Glacial Terminology by Dr. B.N. Upreti, Professor, Department of Geology, Trichandra Multiple Campus. It was followed by a lecture on Hydrological Study of a Probable Glacier Lake Outburst Flood (GLOF) in Tama Koshi Basin by Dr. N. Shakya. Mr. A. Pokharel, Deputy Director General, Department of Hydrology and Meteorology gave information on present level of study and future study perspectives of the Tsho-Rolpa Glacier Lake. Later on Mr. B. Rana, Geologist threw light on Glaciological aspects of Tsho-Rolpa Glacier Lake.

Similarly, Mr. S.N. Poudyal, Superintendent Engineer, Water and Energy Commission Secretariat (ECS) presented his views on Glacial Lake and possible effects of Tsho-Rolpa Glacier Lake outburst Flood. All the lectures were followed by detail discussions.

At the end of the workshop Dr. Binayak Bhadra, the Chairman of the Technical Session put his remarks and Dr. B.N. Upreti, President of Nepal Geological Society on behalf of the organisers expressed vote of thanks to the participants and other concerned organisations.

In the year 1997/98 a series of geoscientific
Best Wishes
and
Hearty Felicitations
on
Happy New Year 2055

GODAVARI MARBLE INDUSTRIES (P) LTD.
Hattisar, Kamal Pokhari

P.O. Box : 489
Phone : Office - 422833, 422844
Factory - 290565
Fax : 421530

Cable : GODMARBLE
Tlx. : 251 EMCEE
talk programs were organised on various topics by distinguished professors and researchers.

The first lecture on the series was “Geochemistry of the Modern and Ancient Sediments”. The talk was delivered by Dr. Christian France-Lanord, Research Scientist, CRPG, CNRS, France in the auditorium of Department of Mines and Geology, Lainchaurl on 6 May 1997. It was attended by the members of NGS and other interested persons from various organisations.

Similarly, Nepal Geological Society has organised a talk program on “Tunnelling in Heterogeneous and Weak Rock Masses: the Metro of Athens Case”. The talk was delivered by Dr. Paul G. Marinos, Professor, National Technical University of Athens, Greece and the President of the International Association of Engineering Geologists and the Environment (IAEG) in the seminar hall of Water Induced Disaster Prevention Technical Centre (DPTC) on 9 January 1998. The lecture was very interesting and informative to the geotechnical and structural engineers. It was attended by over 100 professionals from the government and non-government organisations, universities, engineering colleges and consultancy firms.

Similar talk program was also organised by Nepal Geological Society on Excavation, Rock Support and Grouting of Highly Jointed and at Places loose Rock; Power Cavern Agus IV - Philippines. The talk was delivered by Dr. K. Schetelig, Professor, Department of Engineering Geology and Hydrogeology, Aachen University of Technology, Germany in the auditorium of Department of Mines and Geology, Lainchaurl on 17 March 1998. It was attended by geotechnical engineers, geologists, structure engineers and other professionals from various organisations and Tribhuvan University.

For the first time NGS did a consultancy work with UNDP/Disaster Management Secretariat, Kathmandu to prepare a “Comprehensive Database on Disaster Management Capabilities in Nepal.” On behalf of Nepal Geological Society, two of its members Mr. K.P. Kaphle and Mr. M. Nakarmi prepared the report and submitted to NGS/UNDP-DMS in time. This report will be kept in Home Page by UNDP-DMS. This marvelous work has brought the Society in light to International Community. A summary of this report was presented by Mr. K.P. Kaphle in IDNDR-Day meeting cum seminar on 6 October 1997.

A delegation led by Dr. B.N. Upreti, the President of NGS, and other members Dr. C.K. Sharma, Mr. G.S. Thapa, Mr. Y.L. Vaidya, Mr. A.M. Dixit, Mr. D.B. Thapa, Mr. K.D. Bhattacharjey and Mr. D.N. Subedi met Mr. Keshab Badal, Hon. Minister, Ministry of Industry and handed over a request letter to him for leasing a piece of land in the premise of DMG to NGS for the construction of Geoscience library and auditorium.

Another delegation led by Dr. B.N. Upreti and some of its members Mr. K.P. Kaphle, Mr. J.N. Shrestha, Mr. D.N. Subedi met Mr. Bharati Sharma, Director General, Department of Roads and submitted a request letter to him to create few place for geoscientists in Department of Roads.

NGS successfully organized a three-day Second Nepal Geological Congress on 11-13 Nov. 1997 in the auditorium of Nepal Administrative Staff College Premises in Lalitpur. The Congress was participated by over 250 participants from 11 countries (Nepal, India, Pakistan, Bangladesh, Japan, China, Germany, Austria, France, USA and Canada. The inaugural session of the congress was inaugurated by the chief guest Rt. Hon. Beni Bahadur Karki, Chairman, Upper House and chaired by Dr. Bholu Nath Chalise, Secretary, Ministry of Industry. In this occasion Nepal Geological Society has awarded the Honourary Membership to Mr. Puspa Bhakta Malla, a seniormost geoscientist who has devoted his time for geoscientific research and establishment of mineral based industries in Nepal. In this congress 70 research papers on various field of geoscience were presented. In the concluding session representatives of Pakistan, India, Bangladesh, Japan and Germany expressed their feelings about the congress. In the same session while presenting his concluding remarks Dr. B.N. Upreti proposed to hold HKT International Workshop in Kathmandu Nepal on the occasion of 25th Anniversary of NGS in 2004.
DO YOU KNOW?

- Earthquake is one of the major destroyers of lives and properties.
- More than 15,25,000 people have died in this century due to fatal earthquakes.
- With more than 11,570 deaths, Nepal ranks 15th in earthquake related casualties.
- More than 75% casualties throughout the world are attributed to building failure.
- In Nepal, more than 95% earthquake related deaths are due to collapse/damage of buildings that have been designed and constructed without seismic safety.

DO YOU ALSO KNOW?

- In Nepal, in an average, major earthquakes have been occurring every 100 years and medium earthquakes every 50 years.
- The great earthquake of 1934 (1990 BS) destroyed/damaged more than 207,200 buildings in Nepal and killed 8,519 persons.
- A building designed and constructed incorporating seismic safety measures saves lives and properties during an earthquake.
- We tend to spend lavishly on the finishing (marble, tiles, granite, plaster of paris etc.) but compromise on professional design, supervision, and safety requirements.
- Incorporating earthquake safety measures in buildings would require only additional 2 to 6 percent cost.
- We can also strengthen existing buildings against seismic risks by retro-fitting.

Remember

Lavishness is not safety
Investment on building safety is investment on your own security
Safer Buildings mean secure society
Help raise awareness about seismic safety

TAEC Consult P. Ltd. provides professional services for making your buildings safer. TAEC also helps identify, formulate and realise development schemes in the fields of:

- Rural Infrastructure
- Water Supply
- Buildings
- Irrigation
- Planning
- Road
- Hydropower
- Socio-Economics
Respected Chairman
Dear Fellow Members of the Society
Ladies and Gentlemen

It is a great pleasure for me to welcome you all to the 18th annual general body meeting of the Nepal Geological Society. One year has already been passed since we took the responsibility of the prestigious office of the Nepal Geological Society.

As you all know the Nepal Geological Society has made significant achievements during the past years. It is indeed a happy moment for me to be here standing in front of you, distinguished members, to present the annual report of the society. Please allow me to present the activities of the society conducted in the last one year. During the last one year we have been keeping our effort to the extent possible to enhance the activities of the society and fulfill its objectives.

As you know the tradition of biennial function of the Society was continued by organising a Biennial dinner at Hotel Himalayan on August 30th, 1996 in joint cooperation with the previous 8th Executive Committee. In this Biennial function “पूजनको तिलागत कसरी जोमिने?” Booklet was released which was published by the Nepal Geological Society.

We have continued the regular programme to observe the International Decade for Natural Disaster Reduction (IDNDR) Day by organising a day-long National Meeting cum Seminar on 9th October, 1996. Last year’s theme was “understanding our physical environment: key to natural disaster reduction” under the general theme of UN “Cities at Risk”.

In the day-long meeting 11 Scientific papers were presented. A resolution was also adopted by the participants and the resolution was sent to all the related national and international organisation, and agencies and His Majesty's Government of Nepal.

Also, in connection with the international Decade for Natural Disaster Reduction (IDNDR) a Workshop cum Training on Natural Disaster Preparedness was organized in collaboration with Lutheran World Service/Nepal, Disaster Preparedness Project on 27th November 1996. The training was organized for the High School teachers from Kathmandu, Bhaktapur, and Lalitpur districts. There were 30 participants from Public High Schools, 6 from Private High Schools, 8 officers from Ministry of Education, and 16 from Various National and International Organisations.

This year also we are going to organise a Meeting cum Seminar on the IDNDR Day on 6th October, 1997. The theme for this year is “Natural Disaster Reduction in Nepal: Experiences and Challenges” under the general theme of UN “Too much water, too little: leading cause of natural disasters”. We invite all our members to actively participate in the meeting.

Regarding the publication, the Journal and News Bulletin of Nepal Geological Society is being published regularly. Printing and distribution of volume 13 was completed in time. The proceedings of the first Nepal Geological Congress was published as a special issue of the Journal of Nepal Geological Society (Volume 14). The Journal is already being distributed. Volume 15 has also just come out of press. We request all our members to buy the journals and help towards making our journal sustainable.

I would like to request here to all the members, to subscribe the Journal of Nepal Geological Society, by depositing in advance Rs. 200/- to Rs. 500/- for members of SAARC.
Some people think Environmental Degradation is inevitable sooner or later. But we think otherwise.

For better environment and quality laboratory services, consult

**Nepal Environmental & Scientific Services [NESS] (P) Ltd.**

Thapathali, Kathmandu, Nepal
Phone 244989, 215875 • Fax no. 977-1-226028
E-Mail ness@mos.com.np

Ours is the first and the only Laboratory so far to be accredited by Nepal Bureau of Standards and Metrology under criteria of Singapore Laboratory Accreditation Scheme (SINGLAS).

*Our specialized services include:*

1. Laboratory and Field Testing for Air, Water, Noise and Vibration.
4. Advisory Services on Quality Standards Formulation.
5. Testing and Monitoring Quality Standards.
countries and US$ 50 to 100 for other members. This will help to circulate the Journal to all the members in time and also the Society will benefit from the subscription deposit. The subscribers will promptly receive the Journal at their address along with the statement of account. The Journal will be sent as long as the deposit will cover the cost.

As per the decision made by the General Body, during the 17th Annual General Body Meeting, regarding the Rules and Regulations for election of the executive members of the Nepal Geological Society, the Rules and Regulation Sub-Committee has prepared draft proposal and is going to be discussed for necessary action in this 18th General body meeting.

Dear members, we have already known from the last year’s report that the decision on our request to acquire land for the construction of the Society’s Office/Library Building at the premises of Department of Mines and Geology was not in our favor. This matter has been again taken up, and with the favourable recommendations of the Department of Mines and Geology, the file has again reached the Ministry of Industry. We have been approaching to the respective authorities in the ministry for an early and favourable decision. Most recently, a delegation from the Society also met the Honourable Minister of Industry and appraised about the matter. In this regard, the society is very much thankful to the Director General of the Department of Mines and Geology Mr Gopal Singh Thapa for his strong support and recommendations for forwarding the necessary documents to the Ministry.

This year we have been able to organised two Scientific Talk Programs. The first lecture was on “Multiphase Tectonic in the Indus Suture Zone in Ladakh” delivered by Dr. G. Fuchs (Austria) on Sept. 13, 1996. The other one was on the erosion and sedimentation rate of the Himalaya by Christian France-Ianord (France).

One-day Scientific workshop had been conducted in Russian culture center in collaboration with Nepal Engineers Association on “Tsib Rolpa” Glacial Lake. More than 200 Geoscientists and Engineers and high level officers of His Majesty’s Government had participated the workshop.

The Second Nepal Geological Congress is going to be organized on Nov. 11-13, 1997. To complete the Second Nepal Geological Congress smoothly, an organizing committee has been formed. We have already circulated the first and second circular to all the National and International Geoscientific organization and the members of Nepal Geological Society. We have already received 105 abstracts from 8 countries. The third circular will be sent very shortly.

The representation of Nepal Geological Society is being continued in various workshops, seminars and meetings organised by different Ministries of His Majesty’s Government and various national and international organizations. This year, NGS has represented in the following meetings:

Workshop on “Environmental impact on water resources evaluation guideline” jointly organised by Ministry of Population and Environment and Ministry of Water Resources.

Workshop on “Management of Disaster and Civil Emergency” organised by Nepal Police Project, National Police Academy.

Meetings on amendment of civil servant law 2049 jointly organised by Nepal Engineers Association and other professional associations and societies.

Meeting on Environmental Protection Law 2053 organised by Ministry of Population and environment.

“Public Interaction on Medium Hydropower Study Project organised by Nepal Electricity Authority.

Meeting on Sand Mining in Kathmandu Valley organised by Ministry of Population and Environment Working Group.

Meeting organised by National Society for Earthquake Technology.

Dear Members, the strengthening of NGS library is a matter of concern to all of us. In this respect, we have been able to make only little progress. We are receiving journals from the exchange program from various organisation such as National Center of Excellence in Geology University of Peshawar, Pakistan, Wadia Institute of Himalayan Geology, India, BGR Germany, Institute of Geology, Punjab University, Pakistan and British Geological Survey etc.

We are very happy to inform you that the society has gained a considerable strength in its
membership. The membership status as of 12th September, 1997 (27th Bhadra, 2054) is as follows:
- Total members: 462, out of which
- Full members: 399 (life members: 263)
- Associate members: 63

The issue of employment of geologists in various organisations such as Ministry of Population and Environment, Soil Conservation Department, Department of Roads, etc. has been raised in the General Body meeting time and again. For the fulfilment of these objectives, we have formed a Sub-Committee to approach the respective departments and ministries. This Sub-Committee is actively working to achieve its objectives. Recently, the Sub-Committee had a meeting with the Director General of Department of Roads and had a very fruitful discussion. Similarly we have plans to have meetings with other related departments.

We are also happy to inform you that the Nepal Geological Society has started consulting services from this year. The first work that we have received from UNDP on "Preparation of a Comprehensive Data Bank on Natural Disaster Management Capabilities in Nepal." From this work, NGS will not only earn about Rs. 60,000/- as consulting fee but also its credibility in the national and international organisations will greatly enhance.

Dear members, whatever we have been able to do during the last one year is due to your help, support and advice. On behalf of the executive committee and myself, I would like to offer our sincere thanks to all of you for your active cooperation and continued support all the times. Various governmental and non-governmental agencies have provided technical and financial support to the society. The 9th executive committee would like to extend heartfelt thanks to those organisations and agencies and hope that such cooperation will be continued in future. Particularly, I would like to mention here the following organisations.
- Department of Mines and Geology
- Petroleum Exploration Promotion Project
- Ground Water Resources Development Project
- Department of Irrigation
- Central Department of Geology, Kirtipur Campus, Tribhuvan University
- Department of Geology, Tri-Chandra Campus, Tribhuvan University
- Water Induced Disaster Prevention Technical Centre (DPTC)
- United Nations Development Program (UNDP)
- Royal Nepal Academy of Science and Technology (RONAST)
- Ministry of Home
- International Centre for Integrated Mountain Development (ICIMOD)
- Lutheran World Service
- Environmental Geology Project (DMG/BGR)
- Nepal Electricity Authority
- Nepal Electricity Development Center

We would also like to extend our sincere thanks to Mr. Krishna Murari Amatya, member of our society for his continued support and help towards strengthening the financial status of the society by sale of maps, etc.

We would also like to express our sincere thanks to the Department of Mines and Geology for providing a separate room for the office of the Society. In this regard, we are specially thankful to Mr. Gopal Singh Thapa Director General of DMG for his support in providing the room.

We are also very much thankful to Godavari Marble Industries Pvt. Ltd. who has agreed to provide Rs. 15,000 for each publication of the Journal of Nepal Geological Society on a regular basis. It has already provided the fund to publish the Volume 15.

We are also thankful to Mr. Mukunda Raj Poudel, Executive Member, Nepal Geological Society who worked as an Acting Treasurer of the society so efficiently and sincerely that without whose efforts we could not have done much.

While working, there may have been shortcomings and weakness from our part. For this, I would like to take this opportunity to extend our sincere apology on behalf of the Executive Committee. Also at this moment, we would like to renew our request once again for the continuation of your support, advice and cooperation as well as to point out our weaknesses. We sincerely hope that we will be continuously guided by the respected members of the Society in future.

Thank you.
कावा. कोषायक श्री मुकुन्दराज पौडेलले प्रस्तुत गर्नुभएको 2073/५/६को आर्थिक विवरण

श्रीमान् सभापति महोदय,
नेपाल भौगोलिक समाजको समाननित सदस्य
श्री चन्द्रकुमार शामशुक्ल,
आदरणीय पूर्व अध्यक्षभूमि एवं नवी काकाे. समितिका सदस्य सारीहुँ।

पूर्व उपस्थित सम्पूर्ण सदस्य सारीहुँ।

यस भौगोलिक समाजको कार्यवाहक कोषायकको पदमा रही आर्थिक अनुमोदन समाजको प्रगतिको सार्थक योगदान दिने भका प्रदान गर्नुभएको यस समाजका सम्पूर्ण सदस्य महानुभावको तथा नवी कार्यकारीणी समितिलाई स्वरूपित दिन चाहनुहुँ।

अत : यस समाजको अन्तर्गत आर्थिक समाजवर्ग समाजको सम्पर्क २०७३/५/६ को आर्थिक विवरण पेश गर्न उपलब्ध भएको छ। समाजको नवी कार्यकारीणी निर्वाचित कोषायक अनुमोदन सार्थक बिवेचना गर्नुभएको सो व्याख्या गर्नुहुँ। नेपाल आर्थिक कोषायकको नयालाई कार्यकारीणी समितिले २०७३ साल मादा २२ गते देखि कार्यवाहक कोषायक पदमा राखी कोषायकको कार्यालय गरिएको कुरा स्वीकार गरिन्छ।

आदरणीय सारीहुँ, भैन प्रतीक यस समाजको आर्थिक कारोबार बदै जनु र सार्थक आर्थिक कारोबार संचालनको विमानमा अनुसूचि त्यसको सम्पूर्ण बाराको कमिले गर्दै आर्थिक कारोबार संचालन गर्याछ किन्नर नृत्यावृत निर्देशसँग नन्दन भका लाई धेरै र विवेचने भएको घटना र प्रतिबन्धमा राख्दै गरिन्छ।

आर्थिक वर्ष २०७३/५/६ को आर्थिक कारोबारको सम्पूर्ण कागजात लेखा परिवर्तित लेखा परिचोक र व्यवस्था तथा भोजन, लाइसेंस निर्वाचन भएको थालमा भएको छ। यहाँ म सारखा विवरण पेशा गर्नुहुँ।

१. २०७३ साल भाषण ३२ गतेसम्मा यस कार्यकारीणी समितिलाई प्राप्त भएको २०७३/५/६ को हिसाब-पत्र भैन मौलान र ३३,६०६.२६


२. २०७३/५/६ को कार्यकालमा यस समाजवाहको खर्च र आयामी जम्मा आयामी ५२,०२४.४


३. मुख्य मुख्य श्रीर्षस्त्रा भएको आयामी (क) पत्रिका विद्युत:-


- दर्शनीय सार्वजनिक
- विवेचना सदाबहार
- सार्वजनिक काम
- बुद्धिमत्ता विभाग
- विद्युत विभाग
- अन्य योजना

(१) प्रकाशनको नामी

Lutheran
ICIMOD
RONAST

र. २२,६६४.००
र. २१,४२७.००
र. २०,०००.००
र. १९,५८४.००

२) २०७३/५/६ नेपाल भौगोलिक समाजवर्ग

Butwal Power Co. र. २०,०००.००
TAHAL Consult GW र. २५,०००.००
SMEC र. २५,४२०.००
GDC Project र. २५,०००.००
East Consult र. २५,०००.००

४. २०७३/५/६ गतेसम्मा यस वित्तको परित्याग-

२०७३/५/६ अनुसार तथा २०७४/५/६ तिथिप्राप्त भवनद र ३,७२६,५६.५६ नगर र २,७९३,७६.५६

जम्मा र. ६,५२३,३७२.९६ र. ३,८४,३२४.२६

५. तस्बि यो एक बर्षको कार्यकालमा सम्पूर्ण खर्च कटाई जम्मा र. २,६५,७६६.७४ समाजको रकममा कुनै भएको सार्थक हुनुहुँ।
Best Wishes
and
Hearty Felicitation
on the
Auspicious Occasion
of
Happy New Year 2055

BUTWAL POWER COMPANY LIMITED (BPC)
A Pioneer Private Sector Hydropower Developer,
Promoter of local institutional capability and manpower building
through training and technology transfer
emphasising on the use of Appropriate Technology
& Environment friendly development

Field of Activities: Build, own and operate hydropower plant
by maximizing use of local capability &
institution building.

Accomplishments: Tinau - 1 MW, Andhikhola - 5.1 MW,
Jhimruk - 12 MW

Ongoing Activities: Khimti Hydropower Project (60 MW) as
sponsor and support through engineering
design, project management and
administration services.

Rural Electrification: Syangja and Pyuthan
district using cut-out system.

Other Activities: Environmental and Community
Development Services and Consulting
Services e.g. feasibility studies, model
studies, geotechnical studies etc.

Ownership, Operation
and Management: Andhi Khola and Jhimruk power plants.

Address: Pulchowk, Lalitpur, P.O. Box 11728,
Tel.: 521824, 535595, 525732
Fax: 527898
Auditor's Financial Report 2053-054

The Members
Nepal Geological Society
Kathmandu.

Gentlemen,

I have audited the attached Receipt & Payment Account for the year ended 32nd Shrawan 2054 and reports as follows:
1. I have got all the information and explanations which are required for the purpose of audit.
2. Proper books as required are maintained according to Company's Law.
3. The attached Receipt & Payment Account and Income & Expenditure Account are drawn properly up in accordance with records which are made available to me.
4. According to the information given to me the attached Income & Expenditure Accounts prepared for the year ended 32nd Shrawan 2054 exhibit true and fair view.

Sd.
(Babu Raja Bajracharya)
Registered Auditor

Date: 15th Bhadra 2054

With Best Compliments
from
EastConsult
A Premier Consulting Organization in Nepal

Sister Concerns

East Soil Lab.
East Drilling Co.
East Surveying Co.

P.O. Box 1192, Lazimpat, Kathmandu, Nepal
Tel: 413 267, 412 062, 428 496
Fax: 977-1-417895
Email: sp@eastco.wlink.com.np

Engineers  Social Scientists  Economists  Development Planners
# NEPAL GEOLOGICAL SOCIETY

## RECEIPT AND PAYMENT ACCOUNT

For the year ended 32 Bawun 2054

<table>
<thead>
<tr>
<th>Receipt</th>
<th>Amount</th>
<th>Payment</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>To cash</td>
<td>1,717.19</td>
<td>By advertisement</td>
<td>4,492.00</td>
</tr>
<tr>
<td>To bank</td>
<td>382,608.26</td>
<td>By advance A/c</td>
<td>68,600.00</td>
</tr>
<tr>
<td>To contribution (other)</td>
<td>384,360.00</td>
<td>By auditor fee</td>
<td>4,000.00</td>
</tr>
<tr>
<td>To contribution (member)</td>
<td>22,664.00</td>
<td>By catering service</td>
<td>20,000.00</td>
</tr>
<tr>
<td>To advertisement</td>
<td>23,080.00</td>
<td>By computer service</td>
<td>6,200.00</td>
</tr>
<tr>
<td>To interest rec.</td>
<td>15,443.21</td>
<td>By fuel</td>
<td>1,026.00</td>
</tr>
<tr>
<td>To interest rec. (dollar) 346.35 (Bank + ACCSC)</td>
<td>19,655.37</td>
<td>By furniture</td>
<td>7,000.00</td>
</tr>
<tr>
<td>To life member fee</td>
<td>13,300.00</td>
<td>By hotel bill</td>
<td>80,235.65</td>
</tr>
<tr>
<td>To L.M.F (dollar)</td>
<td>11,350.00</td>
<td>By miscellaneous</td>
<td>5,893.00</td>
</tr>
<tr>
<td>To associate member fee</td>
<td>900.00</td>
<td>By photocopy</td>
<td>32,575.50</td>
</tr>
<tr>
<td>To ordinary member fee</td>
<td>6,986.00</td>
<td>By postage and telegram</td>
<td>15,747.00</td>
</tr>
<tr>
<td>To registration fee</td>
<td>5,119.00</td>
<td>By printing and press</td>
<td>262,226.00</td>
</tr>
<tr>
<td>To map sale</td>
<td>36,427.00</td>
<td>By refreshment</td>
<td>1,499.00</td>
</tr>
<tr>
<td>To journal sale</td>
<td>56,422.00</td>
<td>By remuneration and salary</td>
<td>15,350.00</td>
</tr>
<tr>
<td>To journal sale (dollar) 1182 x 56.75</td>
<td>67,078.50</td>
<td>By rent</td>
<td>11,900.00</td>
</tr>
<tr>
<td>To workshop (IDNDR)</td>
<td>57,399.00</td>
<td>By stationary</td>
<td>10,587.50</td>
</tr>
<tr>
<td>To U.N.D. project</td>
<td>100,000.00</td>
<td>By taxi fare</td>
<td>700.00</td>
</tr>
<tr>
<td>To T.T. Program</td>
<td>50,000.00</td>
<td>by tax on interest</td>
<td>155.19</td>
</tr>
<tr>
<td>To miscellaneous income</td>
<td>9,000.00</td>
<td>By IDNDR</td>
<td>40,925.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By telex and fax</td>
<td>5,425.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By add cheque (2000 + 1500)</td>
<td>3,500.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By balance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nepal Bank, Bhatatari</td>
<td>9,949.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nepal Bank, Fixed A/c</td>
<td>37,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nepal Bank Saving A/c</td>
<td>6,765.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nabil Bank Saving 8201</td>
<td>200,081.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nabil Bank Fixed A/c</td>
<td>29,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nabil Bank Dollar</td>
<td>310,890.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Agriculture Dev. Bank Saving</td>
<td>19,682.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Agriculture Dev. Bank Fixed</td>
<td>37,000.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cash in hand</td>
<td>4,124.00</td>
</tr>
</tbody>
</table>

| | | | 1,253,509.53 |

---

**Signatures:**

- **President**: [Signature]
- **Treasurer**: [Signature]
- **Secretary**: [Signature]
- **Auditor**: [Signature]
## NEPAL GEOLOGICAL SOCIETY

### INCOME AND EXPENDITURE ACCOUNT
For the year ended 32 Srawan 2054

<table>
<thead>
<tr>
<th>Expenditure</th>
<th>Amount</th>
<th>Income</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>To advertisement</td>
<td>4,492.00</td>
<td>By contribution (other)</td>
<td>364,360.00</td>
</tr>
<tr>
<td>To advance A/c</td>
<td>69,600.00</td>
<td>By contribution (member)</td>
<td>22,564.00</td>
</tr>
<tr>
<td>To auditor fee</td>
<td>4,000.00</td>
<td>By contribution $</td>
<td>23,080.00</td>
</tr>
<tr>
<td>To catering service</td>
<td>20,000.00</td>
<td>By advertisement</td>
<td>15,443.21</td>
</tr>
<tr>
<td>To computer service</td>
<td>6,200.00</td>
<td>By int. received (dollars)</td>
<td>19,655.37</td>
</tr>
<tr>
<td>To fuel</td>
<td>1,026.00</td>
<td>By int. rc. (dollars)</td>
<td></td>
</tr>
<tr>
<td>To furniture</td>
<td>7,000.00</td>
<td>By life member fee</td>
<td>13,300.00</td>
</tr>
<tr>
<td>To hotel bill</td>
<td>80,235.65</td>
<td>By life member fee ($200.00)</td>
<td>11,350.00</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>5,893.00</td>
<td>By associate member fee</td>
<td>900.00</td>
</tr>
<tr>
<td>To photocopy</td>
<td>32,575.50</td>
<td>By ordinary member fee</td>
<td>6,986.00</td>
</tr>
<tr>
<td>To postage &amp; telegram</td>
<td>15,747.00</td>
<td>By registration fee</td>
<td>5,119.00</td>
</tr>
<tr>
<td>To Printing &amp; press</td>
<td>262,226.00</td>
<td>By map sale</td>
<td>36,427.00</td>
</tr>
<tr>
<td>To refreshment</td>
<td>1,499.00</td>
<td>By journal sale</td>
<td>56,422.00</td>
</tr>
<tr>
<td>To remuneration</td>
<td>15,350.00</td>
<td>By journal sale ($)</td>
<td>87,078.00</td>
</tr>
<tr>
<td>To rent</td>
<td>11,900.00</td>
<td>By workshop (IDNDR)</td>
<td>87,399.00</td>
</tr>
<tr>
<td>To stationary</td>
<td>10,587.50</td>
<td>By U.N.D.P. project</td>
<td>100,000.00</td>
</tr>
<tr>
<td>To taxi fare</td>
<td>700.00</td>
<td>By T. T. Program</td>
<td>50,000.00</td>
</tr>
<tr>
<td>To tax on interest</td>
<td>155.19</td>
<td>By miscellaneous</td>
<td>9,000.00</td>
</tr>
<tr>
<td>To telex &amp; fax</td>
<td>5,425.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To ID NDR</td>
<td>40,925.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To add cheque (2000+1500)</td>
<td>3,500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>596,036.84</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Surplus Income over expenditure</strong></td>
<td><strong>271,146.74</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>869,183.58</strong></td>
</tr>
</tbody>
</table>

**Signatures**
- **Treasurer**: [Signature]
- **President**: [Signature]
- **Secretary**: [Signature]
- **Auditor**: [Signature]
EXPERIENCE

- Study of landslides and debris flows in the Kamala River Watershed, Eastern Nepal.
- Sector programme support identification on energy sector for DANIDA.
- Hazard mapping of the Lothar, East Rapti River and Marin Khola watershed and also watershed of Agra, Belkhu and Malekhu Khola in Dhading District.
- Landslide study, core drilling and installation of monitoring equipment for DPTC.
- Feasibility studies of small hydro-power projects at many different places, e.g., Okhaldhunga-Rumjatar, Ramechhap, Sindulpur and Udaypur Gaighat-Bokse for Small Hydel Development Board.
- Feasibility study of Mulghat Hydro-Electric Project (68 MW) in collaboration with Electrawatt Engineering Services, Switzerland.
- Detailed feasibility studies of mini-micro hydro power project in Kagbeni-Muktinath in Mustang district and Pakhapani in Myagdi district.
- Detailed design of small hydroelectric projects in Rawa (Khotang) and Dharam Khola (Baglung).
- Site investigation for feasibility study of Puwa Khola Hydroelectric project (6,200 kW) in association with Chuo Kaihatsu Corporation for JICA.
- Consultancy/advisory services in project preparation and design, in acquiring the development license, in preparation and negotiation of power project agreement for private sector financing such as Modi Khola HEP (14 MW) and Upper Bhotekoshi HEP (335 MW).
- Feasibility study of the proposed Naugarh Gad HEP (2 MW) in Darchula District.

SERVICE

The services offered cover all phases of project cycle i.e. from identification through feasibility, planning and designing to implementation and management services including training. Some of the fields covered by Water Resources Consults P. Ltd. (WRC)'s experienced professional staff are:

- Topographical survey, water resources, environment, and watershed management.
- Design of small/micro hydroelectric projects.
- Feasibility study of small and medium hydroelectric projects and detailed engineering design of small hydroelectric projects.
- Socio-economic studies and rural development.
- Project management and hydraulic engineering services and technical services in operation and maintenance of hydropower stations, transmission lines and sub-stations.
- Management services, human resource development, revenue and store management related to the hydropower project and socio-economic project, as well.
- Manpower training services in electricity generation, supply and management.
- Study of landslides, hazard map preparation, core drilling and slope stabilization and advisory services for hydroelectric project to the various private parties.
- Water Resources Consult (P) Ltd. has been providing consulting and advisory services to various development projects of government as well as semi-governmental organization.
अठारौं वार्षिक साधारण सभामा भएका छलफल तथा निर्णयहरू

२०५४ भाद २७ (तदनुसार १२ सेप्टेम्बर १९९७) का दिन अपराक न्युरोड, काठमाडौंमा होटल कनालको समाकामा बसेको यस समाको अठारौं वार्षिक साधारण सभामा समाको अवधारण खाने गर्नको उद्देश्यको लागि, विशालनाथ उपेतीले स्वागत भएको भएको भएको साधारण आरोप र आफ्नो मन्त्रालय प्रस्तुत गर्नेछिन्द्धयमा समाको सफाई शी देखि भनेर सुन्दरीलाई समाको अठारौं वार्षिक प्रतिबद्धन र कार्यालयको कौशल शी मुकुटमा रहेको भएको अडिटरको वार्षिक प्रतिबद्ध (आय-आयको विस्तृत विवरण) प्रस्तुत गर्नेछिन्द्धयमा भएको थियो। तत्परतापूर्वकमा उक्त समाको पूर्ण अवधारण एवं Rules and Regulations Sub-Committee को समाजका अध्यक्ष अथवा अध्यक्षको प्रतिवेदन र कार्यालयको कौशल शी मुकुटमा रहेको अडिटरको वार्षिक प्रतिबद्ध (आय-आयको विस्तृत विवरण) प्रस्तुत गर्नेछिन्द्धयमा भएको थियो।

उक्त अवसरमा का.का.स. नेपाल नेपालका भू-विज्ञान केन्द्रमा विभाग योगदान पुरा गर्ने गरी भएको उक्त साधारण सम्पर्कमा सर्वभौमिक विज्ञान र भू-विज्ञानको लागि समाको पूर्ण अवधारण एवं Rules and Regulations Sub-Committee को समाजका अध्यक्ष अथवा अध्यक्षको प्रतिवेदन र कार्यालयको कौशल शी मुकुटमा रहेको अडिटरको वार्षिक प्रतिबद्ध (आय-आयको विस्तृत विवरण) प्रस्तुत गर्नेछिन्द्धयमा भएको थियो। नेपाल भू-विज्ञानको प्रतिवेदन अथवा अध्यक्षको प्रतिवेदन एवं मूलभूत भएको उक्त साधारण सम्पर्कमा सर्वभौमिक विज्ञान र भू-विज्ञानको लागि समाजका पूर्ण अवधारण एवं Rules and Regulations Sub-Committee को समाजका अध्यक्ष अथवा अध्यक्षको प्रतिवेदन र कार्यालयको कौशल शी मुकुटमा रहेको अडिटरको वार्षिक प्रतिबद्ध (आय-आयको विस्तृत विवरण) प्रस्तुत गर्नेछिन्द्धयमा भएको थियो।

नेपाल भू-विज्ञानको प्रतिवेदन अथवा अध्यक्षको प्रतिवेदन एवं मूलभूत भएको उक्त साधारण सम्पर्कमा सर्वभौमिक विज्ञान र भू-विज्ञानको लागि समाजका पूर्ण अवधारण एवं Rules and Regulations Sub-Committee को समाजका अध्यक्ष अथवा अध्यक्षको प्रतिवेदन र कार्यालयको कौशल शी मुकुटमा रहेको अडिटरको वार्षिक प्रतिबद्ध (आय-आयको विस्तृत विवरण) प्रस्तुत गर्नेछिन्द्धयमा भएको थियो।

नेपाल भू-विज्ञान अथवा अध्यक्षको प्रतिवेदन एवं मूलभूत भएको उक्त साधारण सम्पर्कमा सर्वभौमिक विज्ञान र भू-विज्ञानको लागि समाजका पूर्ण अवधारण एवं Rules and Regulations Sub-Committee को समाजका अध्यक्ष अथवा अध्यक्षको प्रतिवेदन र कार्यालयको कौशल शी मुकुटमा रहेको अडिटरको वार्षिक प्रतिबद्ध (आय-आयको विस्तृत विवरण) प्रस्तुत गर्नेछिन्द्धयमा भएको थियो। उक्त अवसरमा का.का.स. नेपाल नेपालका भू-विज्ञान केन्द्रमा विभाग योगदान पुरा गर्ने गरी भएको उक्त साधारण सम्पर्कमा सर्वभौमिक विज्ञान र भू-विज्ञानको लागि समाजका पूर्ण अवधारण एवं Rules and Regulations Sub-Committee को समाजका अध्यक्ष अथवा अध्यक्षको प्रतिवेदन र कार्यालयको कौशल शी मुकुटमा रहेको अडिटरको वार्षिक प्रतिबद्ध (आय-आयको विस्तृत विवरण) प्रस्तुत गर्नेछिन्द्धयमा भएको थियो।
Best Wishes and
Hearty Felicitations
to
Nepal Geological Society

BDA nepal (P) Ltd.
(Formerly Building Design Associates (P) Ltd.)
Consulting Engineers • Architects • Planners • Valuers

INTRODUCTION:

BDA nepal (P.) Ltd. is basically an Architectural and Engineering Consulting Firm, which provides services in multi-disciplinary engineering fields including agriculture and socio-economic sectors. BDA nepal recently has widened its area of services further to Traffic Engineering (Junction Design, Road Marking & Road Signs) and Geotechnical Investigation sectors introducing the latest technology and design software.

Jhamsikhel, Lalitpur
Tel.: 5-34221, 5-23277 Fax: 5-23263
G. P. O. Box: 1353, Kathmandu, Nepal
International Decade for Natural Disaster Reduction
IDNDR-Day, October 6, 1997

National Meeting cum Seminar on
“Natural Disaster Reduction in Nepal Experiences and Challenges”
under the general theme proposed by UN for this year “Water Too Much Too Little: Leading Cause of Natural Disasters”

The Nepal Geological Society as in the past has organised a one-day National Meeting cum Seminar on “Natural Disaster Reduction in Nepal Experiences and Challenges” in Kathmandu in collaboration with National Committee for IDNDR Nepal and UNDP/Nepal. The United Nations has declared the 1991-2000 as the International Decade for Natural Disaster Reduction. Second Wednesday of October is the IDNDR-Day to observe. The theme of IDNDR-Day for this year given by UN is “Water Too Much Too Little: Leading Cause of Natural Disaster”. The Nepal Geological Society has responded UN declaration since 1991 by organising one-day National Meeting cum Seminar every year and this is the continuity of this tradition.

The Inaugural Session was chaired by Mr. Keshav Sthapit, Mayor, Kathmandu Metropolitan City. Mr. R. R. Pokharel, Secretary, Ministry of Home was the chief guest.

Dr. B.N. Upreti, President, Nepal Geological Society, delivered the welcome speech. The Chief Guest, Mr. R. R. Pokharel, Secretary, Ministry of Home, inaugurated the Meeting cum Seminar and addressed the gathering. Mr. A.M. Dixit, Coordinator, NGS/IDNDR Council highlighted on the IDNDR concept. The meeting was also addressed Mr. Keshav Sthapit, Mayor of Kathmandu Metropolitan City, Mr. W. Berger, Coordinator, Disaster Management Secretariat, UNDP, Nepal, Mr. N. B. Kayastha, Director General, DMG, Mr. K. S. Yogacharya, Director General, Department of Hydrology and Meteorology, Mr. Jnan Kaji Shakya, Member Secretary, IDNDR, National Committee, Nepal, Mr. Todd Stowell, Lutheran World Service and Mr. M. Poudel, Project Director DPTC. The Inaugural Session was followed by two Technical Sessions. It was attended by over 250 representatives from different national and international organisations and agencies based at Kathmandu. During this session 12 working papers on various aspects related to natural and manmade disasters were presented and discussed. Some of the speeches and abstracts of the papers are presented in this Bulletin.

Best Wishes and Hearty Felicitations on the auspicious occasion of Happy New Year 2055

Soil, Rock & Concrete Laboratory
NEPAL ELECTRICITY AUTHORITY
Swayambhu, Kathmandu
Tel.: 271351

We are specialized in:
ALL KINDS OF GEOTECHNICAL WORK

17
Best Wishes and Hearty Felicitations on the Auspicious Occasion of Happy New Year 2055

Shah Consult International (P.) Ltd.
ENGINEERING, ARCHITECTURE, PLANNING & MANAGEMENT CONSULTANTS

BANESWAR
G.P.O. BOX NO. 3840
KATHMANDU, NEPAL

PHONE: +977-1-471852
FAX: +977-1-471852
Welcome Speech by Dr. B.N. Upreti, President, Nepal Geological Society.

Honourable Chairman Mr. Keshav Sthapit, Mayor, Kathmandu Metropolitan City
Honorable Chief Guest Mr. R.R. Pokharel, Secretary, Ministry of Home
Special Secretary Mr. Sri Man Shrestha
Mr. William S. Berger, Coordinator, Disaster Management Secretariat, UNDP/Nepal
IDNDR Member Secretary Mr. Jyan Kazi Shakya
Respected Senior officials of His Majesty’s Government
Distinguished Guests
Dear Fellow Members of Nepal Geological Society
Ladies and Gentlemen

It gives me great pleasure to welcome you all to this meeting-cum-seminar organised on the occasion of the IDNDR Day-1997.

Thank you very much for kindly accepting our invitation to attend this program. We are particularly thankful to the Chief Guest Mr. Pokharel and Mayor of Kathmandu Mr. Sthapit for being kind to be with us this morning.

As you all know that the UN General Assembly in 1989 declared the decade of 1990-2000 as the International Decade for Natural Disaster Reduction. It is observed every year on the second Wednesday of October. This year this day actually falls on 8th of October. As the 8th October falls within Dasain Festival Vacation, we are organising this meeting two days earlier on 6th October.

Nepal Geological Society has been observing the IDNDR-Day since the first year of the IDNDR Decade, i.e., since 1991. It has also constituted a permanent council within the Society, the NGS-IDNDR Council. We are very happy to see that now, this program has received a national focus and so many Government and Non-government organisations have been involved in this program.

Nepal Geological Society has over the years been working towards fulfilling the goals of IDNDR. In addition to the observance of this day, it has also been working in other fields. Last year, in collaboration with Lutheran World Service/Nepal Disaster Preparedness Project and National Society for Earthquake Technology Nepal, we have published an awareness booklet on Earthquake Disaster preparedness. Again, with the financial support of Lutheran World Service, we are preparing another booklet on Landslide Hazard Mitigation. Last year in November as part of the IDNDR-Day program, in collaboration with the Lutheran World Service and Ministry of Education, NGS organised a one-day training program on natural disaster reduction to 60 high school teachers of the Kathmandu valley. This year in November, we are planning to conduct a similar two-day program to one hundred High School teachers of the valley in collaboration with Lutheran World Service and Ministry of Education.

The Theme of IDNDR-Day for this year given by UN is “Water too much, too little: leading cause of natural disaster”. This theme is particularly very relevant to Nepal where the heavy rains during the monsoon is normally a leading cause of natural disaster. In addition to this theme, the society has chosen the theme for this year’s seminar as “Natural Disaster Reduction in Nepal: Experiences and Challenges”. Indeed, it is now time to look back and review what we have done in the last seven years in the field of natural disaster reduction and evaluate our experiences and identify the challenges that lie ahead.

As in the past, this meeting is followed by the technical session in which various aspects of natural disaster will be discussed. I am very happy to find that IDNDR, over the years, had definitely a very significant contribution towards building strong awareness in a wider section of the society. I do hope that the seminar will pave the way for looking at and mitigating natural disaster in a wider framework by bringing together all the concerned professionals in a common platform.

I also hope that this meeting which forms the first part of our program, will provide an over-all guidance and future direction on the activities of Natural Disaster Reduction in Nepal.

Once again I extend a very warm welcome to you all and thank you very much.
Speech delivered by Mr. R. R. Pokharel, Secretary, Ministry of Home, HMG/Nepal

Mr. Chairman,
Distinguished Guests
Mr. President of Nepal Geological Society Dr. Upreti,
Dear Colleagues

I thank you very much for your invitation to participate in and inaugurate this important meeting. I am thankful also for the opportunity provided for sharing my views with you.

It is a pleasure to note that the IDNDR concept is developing wider roots in Nepal with each year. While the government is committed to the issues of disaster reduction in the country, it is wonderful that professional societies such as the Nepal Geological Society have been mobilising their resources in the implementation of similar tasks. I congratulate the Nepal Geological Society for making it a tradition to observe the IDNDR Day in this way. It is still more pleasant to find that your Society has established ties with other similar professional bodies to organise discussions and deliberations on pertinent issues related with aspects of disaster management in Nepal. In this context Home Ministry is glad to provide assistance and collaboration in the organisation of the Meeting.

Disaster management is an immense task in Nepal. We face several types of natural hazards. These vary from snow avalanches and GLOF in the Higher Himalayas to fire and floods in the Terai. Landslides and earthquakes are frequent. At the same time, we are also confronted with so many other problems of development that disaster preparedness appears not to have higher priority. Such condition forced the whole country in the past to focus on relief and rescue activities following a disaster. Now gradually, the country is realising that pre-disaster activities could be more cost-effective than post-disaster activities in the long run. And the pre-disaster actions could be implemented the best if they are included in the development plan of activities. This is the IDNDR Concept, which the country tries to subscribe to.

However, it is a difficult task. Lack of resources is one of the constraints. Lack of national expertise is another constraint. At times, especially during a threat by a certain disaster, such lack of experience and knowledge is felt seriously. Therefore, we all have to combine our efforts to overcome such situation as soon as possible.

The major constraint is probably our inability to address all the aspects of natural disasters comprehensively. It is now becoming clearer that an effective disaster reduction requires a synergy of wide range of actors. From administrators to rescuers, scientists to psychologists, media to professional societies. This requires a good co-ordination of efforts not only among the organisations and agencies, but also amongst individuals and specialists. This meeting is probably one of the forums to discuss such issues and identify the ways to generate the required comprehensiveness of approach.

The government’s efforts in this direction is reflected in the acceptance in principle by HMG Nepal of the National Action Plan prepared by the Nepal National Committee on IDNDR. As you all know, this Committee prepared a draft of a comprehensive plan of action to be implemented by the different government and non-government agencies for natural disaster reduction in Nepal. Subsequently, the draft was reviewed by specialist working groups, who tailored the draft action plan as per the national capabilities to make it feasible economically, socially, and politically. It is hoped that the forthcoming IX Development Plan will consider aspects of the Action Plan and integrate these appropriately into the documents and programs. Please look at the National Action Plan. Please discuss this document and identify what you or your professional Society can and should do by way
of its implementation. This should be a co-
ordinated and not an isolated effort. I personally
consider that a professional society like yours
have tremendous potentials for success in the
field of awareness raising. By doing so, you can
also help to establish the required co-ordination
of concept as well as of action amongst the
various institutions working in the various
aspects of disaster management in the country.

There are many well-trained scientists and
engineers in this country. It is necessary to
mobilise the knowledge of these personnel in
the implementation of the disaster reduction
tasks. These personnel belong to various
disciplines, and may be scattered in various
institutions — public or private. I think it is
necessary for Nepal Geological Society to
enlarge its outreach and start effective dialogue
with similar professional societies for bringing
them also into the folds of IDNDR. This is
important also because the disasters are also
clever and always try to combine themselves to
form complex disaster. A flood is always
combined with landslides and erosion, and
earthquake-induced landslides were found to be
too many during the past Udaypur Earthquake.
So please learn to combine from disasters too.

I am glad to know that this IDNDR
Celebration Programmes includes this
ceremonial part as well as more technical parts
where the scientists and technologists will
discuss on their programmes, findings, and
generalisations. Although I am not a specialist
in geology or engineering, but I do wish to
request you to remember that each and every of
your activities should bear concrete fruits for the
reduction of natural disaster in the country. That
is what is expected of you.

I do hope that the Meeting as well as the
Seminar to follow will seriously discuss related
matters and come up with solutions as well as
consensus on the implementation of the
solutions. The government will listen to the
views of the specialists and implement the
pertinent recommendations.
Tunnelling under Himalayan rock condition is not easy. Geologists predict the difficulties but we solve them.

From Tinau, Andhikhola, Tatopani and Jhimruk Projects to Khimti, Modi and Melamchi

HIMAL HYDRO

is always there.

HIMAL HYDRO

The leading national company in the field of Hydropower, Tunnel, Ropeway and Transmission Line Construction.
Honourable Chairman,
Respectable Chief Guest,
Distinguished Participants,
Ladies and Gentlemen,

Let me, first of all, thank the organisers of this seminar to allow me to express a few words on Nepal’s activities on International Decade for Natural Disaster Reduction (IDNDR).

As you might be all aware, the UN Resolution 44/236 of 22 December 1989 has declared 1990s as the IDNDR. In pursuance with this declaration Nepal formed a National Committee on IDNDR chaired by the Hon. Home Minister in 1990. This committee set up various task forces to identify main issues on disaster management. In order to enhance the disaster management capability of the Government organisations and NGOs training programme was organized in May 1993 with the assistance and support of UNDP/DTCP/DPTC and UNDHA.

Significant efforts towards the realisation of the IDNDR objectives were however made only after the 1993 July flood and landslides, where in too much of water in the form of heavy and incessant rain claimed the lives of some 1500 people and damaged property worth about US$ 100 million. It was only after this unprecedented crisis that policy makers and administrators at higher level most of whom believed disaster as a post operative activity meaning thereby an activity based on rescue and relief only, painfully came to realise the other aspects of disaster. The awakening that disaster management covers disaster preparedness, mitigational activities as well as rehabilitation and reconstruction led to the restructuring of the National Committee on IDNDR on February 10, 1994. This committee now represents wider sections of society including policy makers, professionals, academicians and social workers.

Nepal submitted “The Status of Natural Disaster Reduction in Nepal”, a national report primarily based on action plans on the four aspects of disaster management to the World Conference on Natural Disaster Reduction held at Yokohama, Japan in May 1994. A high level delegation led by the then Home Minister Mr Sher Bahadur Deuba had participated in this conference.

“The Yokohama Strategy for a Safer World” has been the outcome of the conference that emphasises the need to develop a global culture of prevention. It also stresses that special attention should be given to the LDCs in support of their activities in the field of natural disaster reduction. In fact, Nepal was very much encouraged with the outcome of the World Conference. A task force was formed in 1995 to review the national report submitted to the World Conference and to reshape it in commensurate with the Yokohama strategy. The result has been the “National Action Plan on Disaster Management in Nepal, 1996” approved by His Majesty’s Government.

This action plan has been widely circulated - the circulation encompassing the various implementing agencies of HMG and the donor agencies. The sectoral ministries have been assigned activities to be fulfilled in a certain time frame. Significant progress has still to be achieved in the implementation of this action plan since the sectoral ministries are finding it difficult to manage adequate resources for their activities.

One of the objectives of the IDNDR is the integration of disaster reduction measures into the development programmes. In this respect,
credit goes to the Ninth Development Plan which has now given due place to the segment on disaster management in its concept paper. A separate task force is now functioning to draft detail programmes to be included in the 9th plan. This is an optimistic indication of Nepal’s commitment to fulfill the objectives of IDNDR. However, without strong support and assistance of friendly countries and donor agencies, the achievement may not be noteworthy or remarkable.

Herein I would like to quote one of the memorable guiding principles of the Yokohama Strategy, which propounds “Each country bears the primary responsibility for protecting its people, infrastructure and other national assets from the impact of natural disasters. The international community should demonstrate strong political determination to mobilise adequate and make efficient use of existing resources, including financial, scientific and technological means, in the field of natural disaster reduction, bearing in mind the needs of the developing countries, particularly the LDCs.” With this quotation, I would like to again refer to the National Action Plan, 1996. Its success, I believe, would be meaningful in celebrating the IDNDR day.

In the meantime, it may not be out of context to mention here that NSET (National Society of Earthquake Technology) has with the collaboration of Geo Hazards International, California launched KVERMP (Kathmandu Valley Earthquake Risk Management Project). No doubt, this project acts on one of the preparedness programmes on earthquake hazard as indicated in the National Action Plan. I hope such programmes will continue to grow in the future. Finally, I wish this seminar all success. Thank You.

---

EAST SOIL LAB (P) LTD.
Wishes Hearty Felicitations on the auspicious occasion of New Year 2055

We feel happy to announce that we have entered into 6th years of engineering stage by rendering continuous services to our valued clients in the field of geotechnical investigation of Highways, Buildings, Hydropower Structures, Irrigation, etc.

Sincere thanks go to all.

EAST SOIL LAB (P) LTD.
Basundhara, Ring Road, Dhapasi
Tel.: 419 905, Telex: 2276 HOSANG NP
Fax: 977-1-417895
GPO Box 1192, Kathmandu
Vote of thanks by D.N. Subedi, Secretary, NGS

Respected Chairman,
Honorable Chief Guest
Respected Senior Government Officials of HMG/Nepal
Distinguished Guests and Participants
Dear Fellow Members of the Society
Ladies and Gentlemen,


The Society is very grateful to our Chief Guest, Mr. Rewati Raman Pokharel, Secretary, Ministry of Home, for giving his valuable time to this morning to inaugurate the meeting cum seminar and for the inaugural speech.

The Society would also like to express its sincere gratitude to Mr. Keshab Sihapat, Mayor, Kathmandu Metropolitan City for his address to this inaugural session.

The Society likes to extend its sincere gratitude to Mr. William Berger, Coordinator, Disaster Management Secretariat, UNDP/Nepal for being with us and the notable address and financial support for this programme and also taking over the chairmanship of this session.

The Society has always received strong cooperation and support from the IDNDR National Committee, Nepal. The Nepal Geological Society extends its sincere thanks to the IDNDR National Committee, Nepal, for all their supports and cooperations to organise today's meeting cum seminar.

Collaborative support for the organisation of today's meeting cum seminar has been provided by Disaster Prevention Technical Centre (DPTC). The Society would like to extend its sincere acknowledgement to Mr. Madhusudan Poudel, Director, Water Induced Disaster Prevention Technical Center for collaborative support extended to the Nepal Geological Society.

Sincere thanks are also due to Mr. Todd Stowell, Project Coordinator, Disaster Preparedness Project, Lutheran World Service for being with us this morning and his address to the Inaugural Session.

The Nepal Geological Society would also like to extend its sincere gratitude to all the officials of His Majesty's Government of Nepal, distinguished guests, journalists and other distinguished personalities for being with us in this ceremony.

The organisation of today's meeting cum seminar has been made possible by presence of you all, distinguish participants and scientists, by providing contribution of your valuable papers. The Nepal Geological Society extends its heartful thanks to all the distinguished participants and scientists.

The various governmental and non-governmental organisations and agencies helped the Society in various aspects in the organisation of this meeting cum seminar. Sincere thanks are due to Ministry of Home, Department of Mines and Geology, Petroleum Exploration Promotion Project and Department of Geology, Trichandra Campus for their various support extended to the Society.

Special thanks go to all our members of the Nepal Geological Society for their continuous cooperation and support in the organisation of today's meeting cum seminar.

Our sincere thanks are also due to the Russian Centre of Science and Culture for providing this venue for today's meeting.

We offer our sincere apologies for any inconveniences that may have arisen during the organisation of this programme.

Once again thank you, thank you all!
प्राकृतिक प्रकोप न्युनीकरण कार्यालय गोष्ठी

काठमाडौं, मसिर २५ गते। प्राकृतिक प्रकोप न्युनीकरण अंतर्राष्ट्रीय दर्शकको नियमभार उपलब्धको व्यवस्थालेमा लागि प्राकृतिक प्रकोप न्युनीकरण विषयक दुई दिन तालिम कार्यालय आज यहाँ प्रारंभ भए।

नेपाल भौगोलिक समाजभन्दा रैशिला मन्त्रालय, लुधान संस्थान नेपाल, राष्ट्रवादिय विकास कार्यक्रम र भौगोलिक निदेशक राष्ट्रिय तमाज नेपालको संयुक्तमय तथा कार्यभार्या संयुक्तमय उन्नत कार्यार्थका उन्नति र विकासको अधिकारी हुने सहभागिता छ।

प्राकृतिक प्रकोप न्युनीकरण र वृद्ध सावधानी एवं सुरक्षाको अवकाशाधीन र विषयकको अधिकारी हुने नेपालको माध्यमवाट विवाहीहमा नियोजन र विवाह उन्नति र कार्यालयको संयुक्तमय उन्नति र प्रारंभ रहेको छ।

कार्यालयको उन्नति र विकासको भौगोलिक समाजका संयुक्तमय सदस्य ३१, चन्द्रकान्त शर्मा र प्रेमको प्रयोग तथा कार्यक्रमको माध्यमवाट विवाहीहमा नियोजन र विवाह उन्नति र कार्यालयको संयुक्तमय उन्नति र प्रारंभ रहेको छ।

समाजका संयुक्तमय र विवाहीहमा संयुक्तमय सदस्य भौगोलिक समाजका संयुक्तमय विवाहीहमा नियोजन र विवाह उन्नति र कार्यालयको संयुक्तमय उन्नति र प्रारंभ रहेको छ।

Visiting Kathmandu!
Remember us for a
Cosy Environment in the visitors Prime location of Kathmandu

Hotel IMPALA PVT. LTD.
Thamel, Pobadajol, P.O. Box 12229, Kathmandu, Nepal.
Tel.: 977-1-415549; Fax: 977-1-429338
Abstracts and papers presented at the National Meeting cum Seminar on “Natural Disaster Reduction in Nepal: Experiences and Challenges”

Disaster Management Training in Nepal: Experience and Challenge

Singha Raj Uprety
Nepal Administrative Staff College
Jawalakhel, Lalitpur, Nepal

This paper is devoted to shed light on the strategy taken and activities performed pertaining to the disaster management (DM) training programmes in Nepal. The paper consists of four main sections namely; general introduction to the interrelationship between disaster and development, significance of DM training, necessity of DM training in Nepal and experiences gained and challenges to be encountered by Nepal in Disaster Management Training Programmes.

In the first section, an attempt is made to indicate a symbiotic relationship between disasters and development process with a question “are we beating the true path of development process?” Here the development actors are cautioned to hear and care the disasters issues mainly induced by development actions by conducting Environmental Impact Assessment as well as Disaster Impact Assessment inter alia, for establishing sustainable development process.

The second section deals with the importance of training and the necessity of disaster management training in Nepal. Here the necessity of disaster-specific training programmes are insinuated from geophysical, socio-economic and development projects selection and implementation standpoints.

The third section of this paper is devoted to highlight the progress made by Nepal in the disaster management training domain. Here the focus is laid upon the training programmes of disaster management orientation rather than of rescue and relief skill orientation.

Finally, the fourth section ends up with outlining the experiences gained and challenges to be encountered in terms of promoting and extending the Disaster Management Training Programmes in Nepal.

A farming problem in the Nepalese hills and some insights into the traditional technique of management: experiences from the Bagmati Watershed Area

Madhukar Upadhya
Bagmati watershed Project, Department of Soil Conservation, Babar Mahal, Kathmandu, Nepal

ABSTRACT

In Nepal, the monsoon rain, which is the major source of water, brings about 80% of the total annual precipitation in just four months. Though the monsoon rain is very critical for existence, the heavy rain also brings sorrows by causing floods, landslides, gullies, loss of standing crops and threats to life and properties. On the other hand, apart from few winter showers, the only source of water for eight months is the water retained in the soil and underground aquifer which is fed by the monsoon rain. Farming and other development endeavours suffer at both period because of either “too much water” during rainy season or “too little water” during winter and summer. To cope with the situation, mountain settlers long ago had developed techniques of managing monsoon runoff by digging ponds at strategic locations in order to store as much water in the ground as possible during the monsoon so that there is less water
causing damages in the monsoon season and more water available in the winter. They took part of the excess water causing damage and used it to recharge the ground water. After the introduction of the piped water supplies, ponds lost their importance and consequently were abandoned. Realising the traditional wisdom behind uses of ponds, the ponds were revived and used in the hills of Lalitpur and Kavre districts to stabilise landslides and gullies in 1988. The technique not only helped in slope stabilization but also in conserving valuable nutrients which increased maize production by more than 50% in the hills.

GENERAL

It seems that water received through monsoon rain is infinite. This is not true. However, amount of water through the monsoon rain is the major source of water in Nepal. Fig. 1 shows that three meteorological stations recorded 86% of the total precipitation in four months between June and September. Within this period the actual rainy days are usually about 60 to 80 days. However, most of the water is lost through runoff, evaporation, transpiration, and various other hydrological processes. Only a small part of it is retained in ground water and in soil.

During July and August, newspaper headlines carry news on people affected by floods and landslides, loss of lives and properties, and damages to expensive infrastructure and standing crops due to heavy rain. During the same period, there are also many other losses that go unrecorded such as loss of valuable nutrients from the hill farms and micro level changes in the landscape that continually alter faces of the hills. When the monsoon is over big festivals of Dasain and Tihar are enjoyed before the cold winter months. Before the pains and pangs of the heavy monsoon rain has slipped off of people’s minds, there comes the problem of shortage of water basically for drinking and irrigation. As the months of March and April approach, the reservoirs begin to dry out resulting in load shedding; water supply becomes acute, dairy production declines, local fresh vegetables disappear from the market, and diseases spread. All these make our daily lives almost miserable. Once again, cities and towns appear in the news headlines but this time not because of heavy rain but because of shortage of water. Then, the precious time is devoted in discussing the ways and means of making adequate water available to the people, and to our agriculture. It is then that another heavy rain of the monsoon awaits at the door step just few months away. The cycle continues.

Fig. 1: Monthly rainfall of three stations 1996.
WATER RELATED DEVELOPMENT WORKS

Actually, water - the important natural resource that comes free of cost but only for a limited period, becomes problem at two different times. At one time, it is too much and at the other it is too little. In fact, most of the problems that face Nepali lives whether in the hills or in Terai, are associated with water. Out of four major development priorities (i.e. water supply, irrigation, electricity, and roads) of the villagers as well as, if not more, of the politicians, three are water related.

This skewed distribution of water becomes causes of disasters in some places making news headlines, whereas, its overall impact, though hinders our development endeavours in a larger scale remains unnoticed. Because for many water related projects the sources dry out towards summer when we need them most. Since a majority of people in the hills are farmers, the discussion is focused on the skewed distribution of water in relation to hill farming.

Monsoon Rain and the hill farming

Agricultural productivity is probably the hardest hit, widespread, and long lasting but still unnoticed consequence of the “too much or too little” water situation. In this paper, an attempt was made to show how managing monsoon runoff may lead to disaster reduction and agriculture development, both of which are vital for overall development of the hills.

Mountainous areas of Nepal, which homes more than 10 million people, has experienced a steady decline in agricultural productivity by about 1% per year in the last three decades. On the other hand, growth rate of human population has remained well over 2%. Results of the government’s efforts to enhance agriculture productivity, which has always remained on the top of the development priorities for last four decades, are still below satisfactory level. During the same period, many nations have had success in green and white revolutions. Agriculture technology and scientific information have advanced quite a bit. As far as Nepal is concerned, she was not lagging so much behind other Asian nations for a better tomorrow. Unfortunately, even after decades of our efforts, a majority of hill farmers face food shortages for almost three to six months a year Nepal, once food exporting country, has started to import thousands of tons of food every year to feed her population.

Problems of hill farmers

Poverty: Many of the farmers need to migrate elsewhere and work as unskilled labourers to make their living for 3 to 6 months. They also suffer from other problems associated with poverty such as minimal education, poor health, and so on. Poverty rises abruptly after every successive mountain due to proximity of the market for farm products.

Declining productivity: Upon careful examination one can notice that many of the hill slopes that have forest patches today have scars of cultivated terraces indicating that these slopes were cultivated in the past. As the erosion set in and the productivity declined people abandoned the land and allowed natural regeneration of the forest. When it is no longer possible to feed the family from the harvest, a farmer moves elsewhere - many times permanently.

Landslides/gullies: Landslides and gullies are very common features of the midhills in Nepal. Many of them are active during the monsoon season. Many of the landslides are found in or around the cultivated areas.

Lack of water: Immediately after the monsoon season the hills become so dry that there is hardly any water for winter grasses let alone for winter crops. With outside funding sources villagers have hooked pipes to distant sources of water in order to meet household needs.

Lack of fodder: Domestic animals, without which farming in the hills is unthinkable, need to feed 365 days a year. Unlike fuel wood, there is a set of grass or tree leaves which animals eat. After the monsoon season hills face an acute shortage of fodder for animals.

Cause of the problems

One of the reasons that we led to less success in the hills is that the problems were addressed in isolation. It is also because the address was directed to symptoms of the problems rather to the cause of the problems. What is the cause of the problem? To seek an answer to this, some cases are presented.

Case 1: To improve agriculture, adequate moisture is required in the soil during the dry
period, which may be provided through irrigation. For the irrigation, there must be enough water at the source. The source is fed by the groundwater, which again is recharged by the monsoon rain. If most of the rainwater during the monsoon is lost through runoff and so on, ground water does not get fully recharged. This means less water available for irrigation/water supply.

Case 2: Degradation of farmland in the hills affects the farmers more than degradation of other types of land because the livelihood of a family depends on the productivity of his farmland. Moreover, most farmland in the hills acts as a “nutrient sink”, that is, it absorbs valuable nutrients harvested from the forest and used as manure. Forest, shrub, and pasture are the major source of nutrients required for agriculture pursuits. A lot of farmers’ (and especially women’s) time is spent collecting fodder for the animals providing manure. When a significant part of the valuable nutrients collected by poor farmers from the forest is washed by the monsoon rain and lost without being noticed, each farmer has to raise more animals and collect more fodder in order to maintain or to increase his level of food production. With a steady soil and nutrient loss over a period of time, when it becomes unprofitable to cultivate his land and support his family, the farmer abandons it and cultivates a new slope or migrates elsewhere.

If there is quite a regulated monsoon rain, and not much loss of manure, there would have a better harvest without having to have a large herd of animals to manure the farms. Then it is not needed to collect a large amount of fodder. Forest would have better chance to regenerate, and above all, farmers’ families would have less work to do.

Case 3: Stream or riverbank cuttings are another problem associated with flood. When sediment is added to the flowing water, its erosion capacity increases. If the stream does not bring sediment from the watershed above, the chances of bank cutting is less likely, especially in small watersheds. The uncontrolled and diffused runoff from the watershed contributes sediment to the stream.

Case 4: Though many other factors such as geology, slope, vegetation are responsible, a landslide usually occurs when there is too much water at the slope. When a road is constructed, one of the things that becomes a concern is the cost of construction. To reduce the cost two or three small gullies are connected through the side drains and let the water run through a culvert. The natural gully below the road can not carry this additional water and leads to failure.

Case 5: It is generally taken for granted that planting trees and grasses stops a landslide or a gully from advancing. But in reality, plants can only grow when the surface stops moving, which means that water in the slope has to be reduced before the surface stops moving.

Fig. 2 summarises some of the problems caused by the skewed distribution of water.

The above cases show that increased amount of runoff during monsoon which, in fact, begins to generate from the mountain ridges contributes:
- to nutrient loss that results in low food production,
- to destabilising slopes, which discourages vegetation establishment,
- to add sediment that results in bank cutting, and most importantly contributes,
- to less water available to recharge ground water that is necessary for the survival of the living things.

**Annual Water Distribution**

<table>
<thead>
<tr>
<th>Monsoon rain 4 months</th>
<th>Dry period with some winter rain 8 months</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TODD MUCH WATER</strong></td>
<td><strong>TOD LITTLE WATER</strong></td>
</tr>
<tr>
<td>High rainfall</td>
<td>Low soil water</td>
</tr>
<tr>
<td>Drought</td>
<td>Reduced groundwater</td>
</tr>
<tr>
<td>Land degradation</td>
<td>Loss of productive land</td>
</tr>
<tr>
<td>Soil erosion</td>
<td>Loss of standing crop</td>
</tr>
<tr>
<td>Soil degradation</td>
<td>Loss of water</td>
</tr>
<tr>
<td>Loss of vegetation</td>
<td>Reduction in daily productivity</td>
</tr>
<tr>
<td>Loss of livestock</td>
<td>Due to shortage of food</td>
</tr>
<tr>
<td>Loss of crops</td>
<td>Loss of dry rice</td>
</tr>
<tr>
<td>Loss of crops</td>
<td>Loss of drinking water</td>
</tr>
<tr>
<td>Loss of irrigation</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2: Summary of problems caused by the skewed distribution of water.
TRADITIONAL TECHNIQUE OF MANAGING RUNOFF

Probably the first settlers in the mountains understood the effects of accumulated runoff flowing down the hill slopes and resulting hazards around settlements. On the other hand, after the monsoon season as the mountains became dry they also faced hardships of getting adequate amount of water for household uses and for farming. To reduce the problem, they developed the technique of storing runoff water by diverting it to simple ponds dug at strategic locations. Primarily, they were dug to store water for few months so that it could be used for livestock. It is not clear whether the farmers understood a pond’s role in recharging the ground water more efficiently. A pond, in fact, played a dual role of recharging the ground water and storing some water on the surface. Ponds became a common feature of village life in the hills. But unfortunately, they lost their importance and were abandoned when pipes were hooked to distant sources to bring water to the villages. Runoff was not collected any more. Ponds got silted.

RECENT EXPERIENCES IN THE BAGMATI WATERSHED AREAS

With the realisation of the fact that the conventional methods of environmental protection were not being effective and also because they were expensive, indigenous techniques are followed for resource management in 1987. This is believed to be appropriate for the hills and economy. Though the old techniques had already disappeared, some farmers in the hills of the Lalitpur district are still using ponds in private as well as common lands. They divert the runoff to stabilise landslides, which threat to their houses. The technique was adopted with some modification to the entire slope of the hill. The results after one year was very encouraging. In the following years, the technique was transferred to several villages.

Since 1989, using this old technique of runoff management, farmers in the Bagmati Watershed areas of Lalitpur and Kavre have been able to increase maize production by about 50% without using inputs not available locally, grow winter vegetables using pond water, and stabilise active landslides/gullies without engineering structures. Trees have regenerated in areas that were very dry before ponds were dug.

No studies have been made to evaluate how much water a pond can actually add to the groundwater. But it is obvious that pervious bed of traditional ponds acts as funnel to let the water seep into the ground. At the same time, they intercept accumulation of runoff which would otherwise, upon accumulation, cause successive damages.

CONCLUSIONS

It can be said with a fair degree of confidence that managing monsoon runoff, in fact, is addressing the cause of the problem facing hill farmers. In addition, it is also building the foundation for environmental protection and economic upliftment of the inhabitants. It is not merely digging ponds and diverting runoff but it is dealing with "too much water or too little water".

Saving some water when there is "too much" and use it when there is "too little" reduces many of the problems associated with skewed distribution of water, which can be referred as runoff management.

Disaster Management In Nepal: Issues and Challenges

Sushil J.B. Rana
Ministry of Home, Singh Durbar, Kathmandu, Nepal

The main objective of this paper is to provide comprehensive information on the present status of disaster response system carried upon by the government sector, and initiatives taken up by it. Furthermore, an attempt has also been made to highlight the issues and areas of concern for the betterment of disaster management in Nepal.
A general background of the natural features of the kingdom along with her vulnerability to disasters have been discussed in the introductory part. A brief introduction of recurring disasters and their causes and current status of disaster management have also been included in opening part of the paper.

Similarly, a general scenario of disasters in Nepal with comparative data on disasters are presented along with general discussion on types of natural disaster which prevail in the kingdom.

A summary of current legal provisions, organisational structure for managing disasters, IDNDR National Committee and its effort on disaster reduction, sectoral activities and general background on disaster response system has also been incorporated. Initiatives taken up by the government in improving disaster management capacity of the country are also highlighted.

Finally, an effort has been made to raise issues and challenges currently experienced which should be considered in order to improve disaster management capacity of the country.

Controlling vehicular pollution in the Kathmandu Valley?

K.M. Joshi

Kathmandu has often been branded as one of the most polluted cities in the world. It was even once called the second dirtiest city after Mexico so far as vehicular pollution was concerned. And in Kathmandu, everybody is blaming everybody else for this state of affairs. How real is the problem?

A concerted effort to solve this menace was initiated some five years back. What has been done since then? How much has been achieved? A close look at the situation shows that nothing much tangible has been achieved. Only one testing machine (out of ten numbers procured then) is in operation now to monitor diesel vehicles.

One positive outcome of whole exercise is the quantum jump in the level of awareness about the issue amongst all concerned. In the meantime, the vehicle mechanics have come to develop methods to hoodwink the officials and the officials in turn, have tried to remain ahead. The classical chase has begun. It only shows how we may have drifted from the real problem? Introduction of electrical vehicle, though in a limited way, is another positive development.

One major weakness has been the failure to come up with the appropriate rules and regulations so far, on whose absence the law enforcing agency has been forced to extend the clause of "traffic violation" to book the offenders.

An attempt is being done in this paper to analyse the situation then and now.

A guideline for landslide investigation: an experience from DPTC Model Sites

A. K. Karna

Water Induced Disaster Prevention Technical Centre (DPTC)
Pulchowk, Lalitpur, Nepal

Enormous variation of topography and fragile geology of young Himalayan mountains in Nepal are subjected to soil erosion, high intensity rainfall and earth tremors, all of which contribute to severe landslide problems. Huge amount of maintenance fund is invested every year for the clearance of landslide. Landslide is not treated as one of the important parameters during planning and design of infrastructures. Even if treated it is done without detailed investigation which aggravate the problem furthermore. So development of appropriate and
sustainable technology suitable for various types of landslides is vital for the reduction of landslide disaster in the country. Many organisations such as Mountain risk Engineering Unit of the Tribhuvan University, ICIMOD, Department of Mines and Geology are engaged in the research of the landslides. Also, there are some cases of landslides, such as the landslides on both the sides of Charanavati river along Lamosgung Jiri road, landslides along Amiko Highway, etc. where intensive study and prevention works has been carried out. Yet, there is no general guideline which a technician can refer in the practical field.

Soil erosion problems in the midland of Nepal with reference to the Trisuli model site, Nuwakot district, central Nepal

D. Higaki, K.K. Karki and C.S. Gautam
Water Induced Disaster Prevention Technical Centre (DPTC)
Pulchowk, Lalitpur, Nepal

ABSTRACT

Soil erosion has been accelerating due to deforestation in the Midland of Nepal which has high erosion potential because of fragile geology and climatic condition. Especially gully erosion and surface erosion problems are serious in the low altitude area covered with laterite soil. The Water Induced Disaster Prevention Technical Centre (DPTC) selected a model site of gully and sheet erosion of laterite to investigate the erosion processes and suitable counter measures in Trisuli, Nuwakot in central Nepal in 1993. The monitoring result of erosion rate and the effect of erosion control works are discussed in this paper.

Gully has been expanding 40-77 cm per year at the head scarp without vegetation cover and 1 m with partial vegetation. Erosion rate has been decreasing at the gully whose bed was protected by check dams and channel works from stream erosion. These structures also help vegetation coming to the side slopes of gully.

The rate of sheet erosion on laterite was measured by monitoring pegs and varied from 0 cm to 1.5 cm in depth per year. These values correspond to those of previous study on soil-loss (Laban, 1978). Since the fact that plants do not favour lateritic soil therefore suitable grass plantation for dry and inferior chemical condition and soil protection by engineering measures should be combined.

Both erosion by much run-off at the time of heavy rain and less water in dry season should be taken into account to reduce erosion problems in the area covered by laterites.

INTRODUCTION

Soil erosion is an important cause of land degradation in mountain terrain of Nepal (Shapit, 1996). In the Midland, which is often composed of relatively low-relief topography, gentle slopes or river terraces covered with thick soil, has to face serious gully erosion and surface erosion problem due to deforestation. The erosion problem is severe in the laterite soil, especially where plants hardly grow well because of chemical richness of Fe and Al. This type of soil is predominant in low-altitude area.

The Water Induced Disaster Prevention Technical Centre (DPTC) selected a model site at Trisuli, Nuwakot in central Nepal to investigate the erosion processes and suitable countermeasures for gully and sheet erosion of
laterite. Erosion process has been monitored and trial control works have been implemented since 1994. In this paper, the monitoring result of erosion rate and adopted countermeasures are discussed with reference to that model site.

**TERRAIN PRONE TO SURFACE EROSION AND GULLY EROSION**

Gully erosion is serious in the case that the land which consists of thick soil or unconsolidated rocks has got erosion potential by relative uplifting of the land. Three factors favourable for gully erosion can be pointed out in this context in the Midland.

1. Phyllite which is deeply weathered (WECS, 1987) is common in this region.
2. This area is often composed of up-lifted low-relief terrain of erosional origin (Iwata, 1988) which tends to keep thick residual soil according to the long-term slope evolution processes by Davis (1912). This terrain had got low-relief by long-time dissection and has been raising by crustal movement (Iwata, 1985). The land had enough time for weathering and have been protected from erosion processes.
3. Due to heavy sediment load in river water (ex. Mezaki, 1985) thick fine material originating from flood composes river terrace surfaces. River terraces, uplifted low-relief terrain and slopes composed of phyllite are susceptible to gully and surface erosion. If forest is devastated, increasing surface water and weathering by soil moisture changes promote surface erosion on upper slopes and gully erosion on down slopes promptly.

**SITE CONDITION**

The model site of DPTC is located on the slopes of a river terrace facing Tadi Khola (River), a tributary of Trisuli river. Relative height of river terrace surface from the riverbed of the Tadi Khola is waround 100 m and its elevation is around 600 m. Upper and lower layers which consist the river terrace are latosol with 5-8 m in depth and fluvial sandy gravel soil with more than 50 m in depth, respectively.

After deforestation took place around thirty years ago, serious sheet erosion on laterite and gully erosion started. This area was selected as a demonstration site of soil conservation activities by Department of Soil Conservation and Watershed Management (DSCWM), Government of Nepal in 1989, where plantation and some structural measures have been done (DSCWM, 1991). Consequently in the model site of DPTC gullies located in western part (G-1 and G-2) are mostly covered with grasses or trees, but the tributaries of the eastern gully (G-4) are still under very unstable condition with less vegetation cover.

Monitoring of gully erosion and sheet erosion has been executed since January 1994, and model control works such as check dams, channel works and grass plantation have been carried out mainly in the catchment area of G-4.

**RATE AND PROCESS OF GULLY EROSION AT THE MODEL SITE**

**Gully Erosion**

Erosion rate of gully heads has been monitored by measuring the distance between fixed iron pegs and the crown of a gully head for G-1 and the branch gullies of G-4 (RB3.4.5.5A). These iron pegs were installed into line, to which the distance was measured perpendicularly.

Table 1 shows present conditions of the gully studied. Gully bed of G-1 are covered with grass and trees planted by DSCWM. Crown of

<table>
<thead>
<tr>
<th>Gully No.</th>
<th>Vegetation</th>
<th>Gradient</th>
<th>Length(m)</th>
<th>No. of monitor pegs</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gully bed</td>
<td>Gully head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1</td>
<td>grass and tree cover</td>
<td>partly shrub cover</td>
<td>1/1.5</td>
<td>55</td>
<td>9</td>
</tr>
<tr>
<td>G-4RB5A</td>
<td>rare</td>
<td>rare</td>
<td>1/1.9</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>G-4RB5</td>
<td>rare</td>
<td>rare</td>
<td>1/1.7</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>G-4RB4</td>
<td>partly grass cover</td>
<td>partly grass cover</td>
<td>1/1.7</td>
<td>80</td>
<td>7</td>
</tr>
</tbody>
</table>

34
G-1 gully head are partly covered with shrub. Channel works and check dams had been constructed in RB-4 by DPTC since 1994. Baboo plantation was executed in RB5A in 1997, but the vegetation condition of RB5 and RB5A is still poor. Though monitoring pegs were installed more than the numbers shown in Table 1, the pegs which give accurate data are used in this paper.

The result are shown in Fig. 1, where minus value means distance expansion between pegs and crown of a gully head. Though erosion is expected to be active in rainy season, the data after August was not available in 1995.

![Gully head erosion (distance reduction) diagram]

**Fig. 1:** Gully head erosion (distance reduction) during each monitoring period (distance expansion)

Gully has been retrogressively expanding 3.1 cm/year, 36.5 cm/year, 81.8 cm/year and 4.4 cm/year in average from 1994 to 1997 at the heads of G-1, G-4 RB5A, RB5 and RB4 respectively. It can be pointed out that during monsoon season gully heads expands (eroded) and the monitored distance enlarges during dry season conversely (Fig. 1). Since soil block collapse and rain drop erosion are the major processes of gully head expansion (erosion) according to regular monitoring of the sites, this enlargement of distance might be due to development of vertical cracks under dry soil condition which are opening towards rainy season because of lack of lateral support at gully head.

Fig. 2 shows the relation between precipitation and erosion amount during monitoring periods for each rainy season. It can be said that large precipitation promote more erosion. However expansion rate of G-1 gully head whose foot slopes are covered with grass and trees recently was 32.2 cm/year in rainy season of 1994 and became smaller since 1996. It is also noticeable that the expansion rate of the gully RB4 where channel works by PNC concrete blocks and gabion check dams were carried out in June-July 1994 had become smaller in comparison with those of RB5 and RB5A after 1994. The gullies RB5 and RB5A, which are less treated, are still actively expanding at the heads because vegetation cover is very poor.

**Sheet Erosion**

Sheep barren ridge (R), steep grass-covered valley head (V) and barren gentle crest slope (S)
Fig. 2: Precipitation and erosion amount during monitoring period for rainy season.

were selected for monitoring sheet erosion rate of latosol (Table 2). Iron pegs were installed as a grid, and the length above the ground (Takei et al., 1981) has been monitored since January 1994. Since the slopes behind each site are small and covered with shrub or trees, monitored length indicates erosion (or deposition) rate and soil loss from the monitored slope as well. Surface rate erosion is presented in Table 3.

The other monitoring site (N) was also selected on the crest slope with convex cross section, and monitoring work was done only on 20th September and 8th June in 1997.

Average erosion rate per year is 1.03 cm, 0.63 cm, 0.03 cm (plus value means deposition) on the slopes (R), (V), (S) respectively.

Table 3: Surface erosion rate (unit: cm)
(each rainy season and average (cm/year) from Jan. 1994 to Sept. 1997)
- = erosion, + = deposition

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>V</th>
<th>S</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-Oct 1994</td>
<td>-0.75</td>
<td>-0.15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Apr-Aug 1995</td>
<td>-1.66</td>
<td>0.25</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>Jun-Oct 1996</td>
<td>-1.78</td>
<td>-2.65</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Apr-Sept 1997</td>
<td>0.33</td>
<td>-1.59</td>
<td>0.11</td>
<td>1.53</td>
</tr>
<tr>
<td>Jun 8-Sept 21 1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average (cm/year) -1.03 -0.63 0.03

Table 2: Monitoring site for surface erosion

<table>
<thead>
<tr>
<th>Site</th>
<th>Area (m²)</th>
<th>Soil</th>
<th>Topography</th>
<th>Gradient (degree)</th>
<th>Vegetation</th>
<th>No. of monitor pegs</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>48</td>
<td>Laterite</td>
<td>Ridge slope 32</td>
<td>rare</td>
<td>20</td>
<td>small planted trees</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>72</td>
<td>Laterite</td>
<td>Valley head slope 30</td>
<td>grass</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>400</td>
<td>Laterite</td>
<td>Crest slope 12</td>
<td>rare</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>500</td>
<td>Laterite</td>
<td>Crest-side slope 5-40</td>
<td>rare</td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Erosion or deposition during each rainy season is shown in Table 4. The data obtained from the slope (N) is 1.53 cm during the rainy season of 1997. On steeper slopes larger erosion rate was recorded within the area of the slope (N). Erosion or deposition rate on the gentle crest slope (approximately 10° or less) is so small such as 0.025 cm (deposition) on the slope (S) and 0.153 cm on the slope (N) that soil on gentle barren slope is considered to be almost stable. However, the steep part (30-50°) of the slope (N) was eroded 3.62 cm deep in the rainy season of 1997. The erosion amount is so smaller than that of gully heads that the relation of it with precipitation is not discussed.

Table 4: Soil loss rate by land use
(Laban, 1978)

<table>
<thead>
<tr>
<th>Landuse</th>
<th>Annual soil loss (tons/hectare)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well managed forest land</td>
<td>5 - 10</td>
</tr>
<tr>
<td>Well managed rice terraces</td>
<td>5 - 15</td>
</tr>
<tr>
<td>Poorly managed sloping terraces</td>
<td>20 - 100</td>
</tr>
<tr>
<td>Degraded range land</td>
<td>10 - 200</td>
</tr>
</tbody>
</table>

Comparison with previous study

From these values soil loss is 63-153 m²/ha/year which is a little larger than that of degraded range (Table 4) land and correspondent to severely gully land in Mahabharat Lekh estimated by Laban (1978). In comparison with the previous study on soil loss reviewed by Sthapit (1996) erosion rate of the Trisuli model site is in the largest range in Nepal.

Carver and Nakarmi (1995) pointed out the importance of pre-monsoon rain on soil erosion because vegetation cover is less during this time. Though analysis has not yet been done in detail on monthly erosion rate, considerable erosion in April/May was recorded on the slopes (R) and (S) (1.65-1.81 cm in 1995 and 0.23-0.3 cm in 1997) in spite of small precipitation. On the other hand Table 5 shows the rate of precipitation and that of erosion (expansion) amount of gully heads during the former period (until July) of rainy season in whole rainy season in each year. The relation between the rate of precipitation and erosion amount is different at each gully, and erosion during the former period of rainy season is not concluded to be important. Further monitoring is necessary to evaluate the importance of pre-monsoon at this model site.

COUNTERMEASURES AND THEIR EFFECT

The monitoring result of gully head expansion proved the importance of vegetation cover to control gully formation at G-1. The effect of channel works and check dams which was indicated by the data of the gully RB4 can be also understood in this context as follows:

1) to control vertical erosion on a steep gully bed
2) to protect side slopes from slope collapse
3) consequently vegetation can grow on stabilised slopes

Photos of RB4 before and after the construction indicate that grasses expanded their territory on the side slopes and crown of the gully head.

Table 5: Rate of precipitation and erosion amount during May-October 1994 of rainy season in whole rainy season

<table>
<thead>
<tr>
<th>Monitoring period</th>
<th>Precipitation from May to July (mm)</th>
<th>Precipitation of monitoring period (mm)</th>
<th>Erosion until the monitoring date in July/erosion during monitoring period (cm) and its rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>-= distance expansion</td>
</tr>
<tr>
<td>May-Oct 94</td>
<td>663.7 (44.2)</td>
<td>1500</td>
<td>-4.4/32.2 (0) G-1</td>
</tr>
<tr>
<td>May-95</td>
<td>862.2 (51.2)</td>
<td>1682.9</td>
<td>6.4/70.4 (9.1) RB5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5/177 (1.4) RB4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3.9 (50) RB4</td>
</tr>
</tbody>
</table>
Soil protection works from surface erosion was carried out by grass plantation and making small steps (about 20 cm wide) in 1995, but plantation was not successful because of very dry condition. In July 1997 Stylo, Mollases and Dinanath which was effective grass for soil erosion control in the Dang district were planted on barren slopes of the model site. According to the inspection after this rainy season Stylo and Mollases have grown 3-30 cm and 6-8 cm high.

CONCLUSION AND RECOMMENDATION

Soil erosion problems of lateritic area due to surface and gully erosion were discussed with reference to the model site of DPTC focusing on erosion rate obtained from regular monitoring and effect of model control works.

Expansion rate of gully head is 3.1, 63.5, 81.8 and 4.4 cm/year in average at G-1, RB5A, RB5 and RB4, respectively. Time-sequential changes of the expansion rate indicate positive effect of vegetation, channel works and check dams to control gully erosion. Gully head has been retrogressively expanding by soil block collapse and rain drop erosion in rainy season preceded by crack development in dry season.

Sheet erosion was also monitored by peg method on the slopes R, V, S and N with different topographical or vegetation conditions. Average erosion rate is 1.03, -0.63, 0.03 cm/year (deposition), and -1.53 cm/year at R, V, S and N respectively. Erosion is not active on gentle slopes in spite of barren condition.

In comparison with previous study soil loss by surface erosion is estimated to be in large range in Nepal.

Bio-engineering works such as the combination of channel works/check dams or terracing works and vegetation might be effective for gully and surface erosion control.

Because erosion rate is very small on gentle slopes of laterite in the model site, it is necessary to make slopes gentle and protect top soil from sheet erosion. It also improves dry soil condition for plantation. Combination of terracing works whose cliff is protected by vegetation or some structures and grass plantation can be proposed to control surface erosion. Run-off control is also important.

Increased run-off and weathering promote soil erosion, and decreased soil moisture prevents vegetation after deforestation. Both much water at the time of heavy rain and less water in dry season should be taken into account to reduce erosion problems in the lateritic area.

REFERENCE


Pollution of river systems in Kathmandu Valley

Mohan Singh Khadka and Mani Gopal Jha
Water Quality Section, Department of Irrigation
Jawalakhel, Lalitpur, Nepal

The Kathmandu basin is about 607 sq km in area and the mean annual rainfall is about 1740 mm. Most of the rainfall occurs in the monsoon period (June-September) so there is too much of water in this season where as too little in dry season. In the dry period when the groundwater table is lower than the riverbed, aquifers get recharged from the river waters. About 50% of the water supply in the valley is obtained from the river resources so due to very low river discharge, adequate dilution of the pollutants is not possible.

Local people have sentimental feelings about the rivers as there are many Hindu and Buddhist shrines and areas of cultural and religious importance along the river banks. Bagmati is the main river and it has eight main tributaries. In recent years, the environmental situation of the river system is getting degraded. Frequent out break of epidemics related to water borne diseases has been a major problem. The river beds are getting deeper, the banks are getting narrower, and the waters are getting polluted.

Main factors affecting the water quality in the rivers are:
- direct discharging of sewage into the water courses
- discharging of untreated industrial wastes
- squatter settlements along the river banks
- keeping and slaughtering of livestocks on the river banks
- washing of vehicles, vegetables and others in the river
- street run off and agricultural run off.

It is hoped that the newly established Ministry of Population and Environment will play leading role in the days to come to deal with this problem. The new Act for controlling pollution should be enforced as soon as possible.

यस समाजका आजिवन सदस्य श्री कृष्णभुरारी अमात्यब्जूले
यस समाजको आर्थिक स्थितिलाई मजबुत बनाउनको लागि
महत्वपूर्ण योगदान गर्नुभएकोमा यस समाजकोतर्फबाट
उहाँलाई हार्दिक धन्यवाद दिन चाहनछौँ।

नदैँ कार्यकारिणी समिति
नेपाल प्रौद्योगिक समाज
Database on disaster management capabilities in Nepal

K. P. Kaphle and M. Nakarmi

1Department of Mines and Geology, Lainchaur, Kathmandu, Nepal
2National Society for Earthquake Technology Nepal (NSET-Nepal), Kathmandu, Nepal

The Himalayan kingdom of Nepal lies in the central part of the Himalayan belt. Because of her location, characterised by a rugged topography, very high relief, variable climatic conditions, complex geological structure with active tectonic processes and continued seismic activities the country is prone to various types of natural hazards. The whole country faces high level earthquake hazards. The hilly and mountainous regions are vulnerable to landslide and debris flow hazards. Presence of numerous lakes of glacial origin in the northern part of the country has created the possibility of Glacier Lakes Outburst Floods (GLOF) in near future. Similarly, the flat piedmont plains of the Terai and the low valleys in the mountains are susceptible to floods. Beside these, almost every year smaller or larger part of the country is struck by one or several forms of other disasters such as drought, hailstorms, epidemic, fire, etc. The country has many times suffered from these disasters in the past resulting in huge losses in terms of loss human lives and damaged public properties and infrastructure. The earthquakes of 1934, 1980, 1988, and the floods of July 1993 are some of the examples of the natural disaster events, which caused considerable set back to the development efforts of the country.

Many of the disasters can be prevented or modified by the use of available technology. But there are many natural hazards, which are not yet amenable to modification or prevention. However, it is now widely recognised that the impacts of all disasters can surely be reduced significantly with the help of proper methods of disaster management, focussing on pre-disaster preparedness activities. This is the central message of the International Decade for Natural Disaster Reduction (IDNDR) declared by the United Nations for 1990-2000 AD.

Faced with the problems to cope with the past disasters, Nepal has accumulated considerable experience in disaster management. Although many of the past experiences pertain to the post-disaster activities, but considerable efforts have been put to pre-disaster actions such as preparation of hazard maps, studies and researches in aspects of natural hazards, etc. Furthermore, different government as well as non-government agencies have put considerable efforts in generating knowledge and data on hazards, disaster management procedures, and other supporting information.

These valuable information / data, maps, reports etc. are scattered across the different agencies, making any effective use of the information very difficult, if not impossible. At present, many times the knowledge on even the existence of this or that data/information is limited to the particular institution that generated the data; and at times the knowledge is limited only to the related individual.

Such condition precludes the development of any disaster management program or its improvement, since such programs should be based on the data/information — existing or to be generated. Therefore, it is necessary to prepare an inventory of all the data (maps, reports, programmes, etc.) that are available with the different institutions, so as to understand better what is required to be done for the generation of additional, non-existing data/information.

Therefore, in order to assess the existing disaster management capabilities of Nepal and to develop it further in an efficient way, it was felt necessary to gather and compile all the existing data (secondary data) that are accessible, and to identify the leads to the depository of the data that are not easily obtainable.

The present work tried to address this important question. The UNDP/DMS and the Nepal Geological Society (NGS) entered into an agreement to collect and compile all the existing data/information that could be of use in the assessment of national capabilities in disaster management in Nepal. All known sources of information were contacted, and all accessible data/information, maps and reports have been collected to form what could be termed as the first database on disaster management capability in Nepal. However, a document of this type requires a continual updating of the database.
Kathmandu Valley Earthquake Risk Management Project (KVERMP) - an introduction

S.S. Basnet¹, C. Cardona², A.M. Dixit¹, L. Dwellie², M. Nakarmi¹, S.B. Pradhanang¹, B. Tucker² and C. Villacis²
¹National Society for Earthquake Technology Nepal (NSET-Nepal), Kathmandu, Nepal
²GeoHazards International (GHI), Stanford, USA

ABSTRACT

Kathmandu Valley faces a large and growing earthquake risk due to the region’s high level of seismic activity, its rapidly growing population, and a general lack of awareness about earthquakes. The Kathmandu Valley Earthquake Risk Management Project (KVERMP) will address this earthquake risk by conducting the following activities:

Evaluate the risk that faces modern day Kathmandu Valley and use this information to identify the actions to reduce this risk that are politically, economically, and technically feasible. An earthquake scenario that describes the possible effects of an earthquake will be created by a cross-section of Kathmandu valley leaders, using existing studies and information collected through interviews with leaders of critical facilities. A list of potential mitigation activities will be generated following the development of the scenario, which will be honed to a short list of achievable activities.

Begin the process of reducing vulnerability to one critical sector in kathmandu Valley, namely public schools. This will be accomplished through a survey, filled out by school headmasters, which will be analyzed and verified by structural engineers. This process will define the risk faced by public schools. In addition, example retrofit designs will be made for three typical schools.

Raise awareness of earthquakes among the public, government officials, the international community resident in Kathmandu Valley, and influential organizations abroad. January 15 will be declared as Earthquake Day, commemorating the 1934 event. On this day, drills will be conducted by school children, and earthquake safety information will be distributed.

Build local institutions that can continue addressing Kathmandu Valley’s earthquake risk after the completion of this project. The project will help to establish a Disaster Management Office in Kathmandu Municipality and will build the capabilities of the National Society of Earthquake Technology—Nepal (NSET) so that it can be established as a seismic safety “watchdog” for Nepal.

EARTHQUAKE RISK OF KATHMANDU VALLEY

Nepal has a long history of destructive earthquakes. In this century alone over 11,000 people have lost their lives in four major earthquakes. A 1934 earthquake produced an intensity of IX-X on the Modified Mercalli Intensity (MMI) scale in Kathmandu Valley, and destroyed 20% and damaged 40% of the valley’s building stock. In Kathmandu itself, one quarter of all homes was destroyed. Many of the temples in Bhaktapur were destroyed as well.

This earthquake is not an isolated event. Three earthquakes produced intensities of IX-X in Kathmandu Valley in the 19th Century: in 1810, 1833, and 1866. The seismic record of the region suggests a return period of about 25 years, indicating that a devastating earthquake is inevitable in the long run and likely in the near future.

A large earthquake near the Kathmandu Valley today would cause significantly greater human loss, physical damage, and economic crisis than caused by the past earthquakes. With the Valley’s burgeoning population of almost 1.5 million people, uncontrolled development, and a construction practice that has actually degraded over this century, the Valley becomes increasingly vulnerable to earthquakes with each
passing year. Recent experience of the consequences of large earthquakes in developing countries has led to the rule of thumb that shaking of intensity IX on the MMI scale will result in 5% of the exposed population to die and 20% to have injuries requiring hospitalization; for Kathmandu Valley today, that means that a repeat of the 1934 earthquake would result in 75,000 deaths and 300,000 serious injuries. Even if all critical facilities were to remain operational, this would be an unprecedented disaster. Figure 1 depicts the earthquake occurrence causing intensities of VIII to X in Kathmandu Valley and the population growth since 1800 AD. With such rapid growth, the impact of the future large earthquake is expected to be extremely high.

Despite this threat, there is no institution within Kathmandu Valley to assess earthquake risk or promote an earthquake risk management program. A weak economy, abundant poverty, and a tendency in the general population to ignore earthquake hazard in order to concentrate on fulfilling more immediate needs significantly contribute to the seismic vulnerability and lack of earthquake preparedness in Kathmandu Valley. Nepal’s rapid population growth exacerbates its earthquake vulnerability. With an annual population growth rate of 2.4%, the population of Nepal will double by the year 2019. The consequences for Kathmandu Valley are even more severe: rural exodus drives urban growth at an even faster rate, resulting in an urban growth rate of 6.5% and one of the highest urban densities in the world. Such growth increases earthquake risk in three primary ways:

- It strains the economy, diminishing available funding for education, research, public policy and regulation programs, which could reduce the seismic hazard.
- It necessitates rapid rather than sound construction, resulting in unplanned, unregulated buildings and inadequately engineered development.
- High population densities increase the raw number of people at risk and overwhelm emergency services.

The technical information about the earthquake risk in Kathmandu Valley is incomplete and scattered among several governmental agencies. However a more important contributor to the region’s lack of earthquake preparedness is that the technical information that is available has not been synthesized, has not been applied to the infrastructure of modern day Kathmandu Valley, and has not been presented in a form that the public and government officials can digest.

**ADDRESSING THE EARTHQUAKE THREAT**

Earthquake risk is only one of many problems facing Kathmandu Valley and Nepal, but given the inevitability and disastrous consequences of a future strong earthquake, seismic safety must be incorporated into its development plan.

1. An estimation, using all information currently available, of the probable consequences of a repeat of the 1934 earthquake on modern day Kathmandu Valley. This will provide a factual basis for a sound public policy concerning earthquake safety.
2. A comprehensive set of earthquake risk management recommendations based on the expected consequences of a large earthquake which is developed by local and international specialists in government, city planning, urban infrastructure, and emergency services; and addresses the most significant aspects of the Valley’s risk.
3. A properly constituted and equipped organization in which government, business and academic leaders collaborate to foster earthquake risk management and incorporate earthquake disaster mitigation strategies into Kathmandu Valley urban development process.
4. A demonstration project in which the earthquake risk of some critical, vulnerable element of society is reduced. Such a project should not only accomplish a tangible improvement (to leave something more than reports and organizations), but also contribute to the training of local people.

The Kathmandu Valley Earthquake Risk Management Project (KVERMP) has set the following objectives to address these needs:

1. Evaluate earthquake risk and prescribe an action plan for managing that risk;
2. Reduce the public schools’ earthquake vulnerability;
3. Raise awareness of earthquakes among the public, Nepalese government officials, the international community resident in Kathmandu Valley, and influential organizations abroad concerning Kathmandu Valley's earthquake risk; and

4. Build local institutions that can sustain the work launched in this project.

Evaluating Earthquake Risk

Our first step will be to summarize the available information about the Kathmandu Valley's earthquake risk in a form that is understandable to public officials and the general public. The goal is not to develop a new, improved assessment of this risk, but rather to present what has previously been published about that risk in a form in which people who are subject to the risk and those who are responsible for managing that risk can understand. This comprehension is needed in order to organize a response to the earthquake hazard.

We will develop an earthquake risk map by superimposing the intensity of ground shaking experienced in the 1934 earthquake on the surface geologic conditions and the infrastructure of modern Kathmandu Valley, including roads; bridges; gas, water, sewer and electrical lines; critical government buildings; the airport; schools; and hospitals. We will also write a summary of the earthquake risk of the Kathmandu Valley. What is known about future earthquake (size, location, and repeat times) and the growth of the urban environment in Kathmandu Valley will be described.

For the purposes of the earthquake scenario (described below), we will concentrate on estimating the effect of a repeat of the 1934 event. One of our reasons for choosing an actual earthquake is that experience has shown that lay people are better able to envision what the effects of a repeat of an actual event will be on their city than the effects of a hypothetical event. Another reason is that, while seismology can be used to estimate the effects of a hypothetical event, taking into account magnitude, rupture dynamics, path attenuation, and near-surface geology, these estimates are subject to debate. By using the observed ground motions of a past event, we can avoid a debate over seismological details and concentrate on improving earthquake preparedness. Finally, this approach is taken because it is felt that the effects of the soft surface geology in the Kathmandu Valley will mean that the relative pattern of intensity will be approximately the same for all distant earthquakes. In short, we think that envisioning what would happen to modern-day Kathmandu Valley if the 1934 event were to be repeated is the best means to envision what will happen during the next significantly destructive earthquake. In all probability, the next earthquake to severely damage Kathmandu Valley will not be an exact repetition of the 1934 event. However, it is quite reasonable to assume that the next large earthquake to affect Kathmandu Valley will have the same relative shaking pattern within the Valley.

We will use the earthquake risk map in our interviews with the operators of critical facilities in the Kathmandu Valley. The interviewers will explain the overall earthquake risk of Kathmandu Valley to the person being interviewed. Part of this presentation will be an explanation of an earthquake risk map, which will show the level of shaking experienced in 1934 at the location of the operator's facility. The interviewers will ask what the expected consequences of such shaking would be, and will determine the level of preparedness in each facility to respond to an earthquake.

Presenting Earthquake Risk

After all the interviews are complete, a workshop will be held in Kathmandu. Government officials, business leaders, and community representatives in Kathmandu Valley will be invited to participate. These groups will include people who are responsible for the operation of important facilities or are responsible for responding in emergencies. In addition, a few international experts will be invited to attend who have similar responsibilities in other communities and who have actual experience during damaging earthquakes.

The workshop will have two products:
- An earthquake scenario for Kathmandu Valley that is supported by the workshop participants
- A list of suggested activities to reduce Kathmandu Valley's earthquake risk
The first product of the workshop will be an earthquake scenario, namely a description of the possible consequences of a repeat of the 1934 earthquake. This scenario will be created during the workshop with the help of a professional facilitator. The facilitator will use the information that has been assembled in the earthquake risk map and collected during the interviews to enlighten the workshop participants about the potential affects of an earthquake and to guide the participants towards consensus on a scenario of events.

The second product of the workshop will break into small groups based on areas of interest and/or expertise. Each group will suggest possible methods to address the risk that faces Kathmandu Valley. International experts and local specialists will guide these discussions and present techniques that have successfully reduced earthquake risk elsewhere in the world. All suggestions will be compiled into one list that will act as the basis for determining an action plan for Kathmandu Valley.

Creating an Action Plan

At the completion of the workshop, individuals will be selected to create an action plan for Kathmandu Valley in conjunction with NSET. The selected group should represent the major stakeholders in Kathmandu Valley. In June of 1998, NSET will officially adopt an action plan for reducing Kathmandu Valley’s earthquake risk. This action plan will include a small number of items that are politically, financially, and technically feasible. This action plan will be adopted during a meeting with a professional facilitator. NSET will review annually what progress has been made towards the goals of the action plan, assess the reasons when progress has not met expectations, and write a report for public consumption. In this way, we expect that NSET will begin to establish itself as a “watchdog” of seismic safety programs in Nepal.

SCHOOL SAFETY DEMONSTRATION PROJECT

This activity aims to begin the process of reducing the vulnerability of one element of Kathmandu Valley. It will produce tangible results (retrofit schools) as well as education of earthquake risk and training. Schools were selected for this demonstration project because of their importance in the community and their potential for use as post-disaster shelters.

The first step of this activity is to classify the schools in the Kathmandu Valley according to earthquake vulnerability. There are almost 2000 schools in the Kathmandu Valley, one-third of which are private and two-thirds of which are public. Each school comprises 1-4 buildings.

There is neither sufficient time nor money to perform a complete structural evaluation of all these schools. We have decided to instruct the headmasters how to complete a survey that will allow an approximate classification, and this classification will be checked with a more thorough examination by a structural engineer of a sample of ten percent of the schools. This procedure will be affordable and will raise the awareness of the headmasters.

The survey forms will be an adaptation of existing forms used by the Building Department. These forms will be simplified and illustrated so that headmasters can fill them out. The survey will determine such parameters as: the number of age of the student body; the number of teachers and staff; the number of buildings, their age, the number of floors, their dimensions, construction materials, and construction systems.

There will be a series of 20 seminars over a period of 2 months for the headmasters of each of Kathmandu Valley’s schools. Each seminar will be attended by about 100 headmasters and will last an entire day. The seminars will consist of 3 segments. The first will be an introduction to earthquakes, earthquake risk, and Kathmandu Valley’s earthquake risk. The second segment will explain this project’s school-related activities. The third segment will describe a questionnaire that we will request each school headmaster to complete (with the help of his associates) to evaluate the structural and non-structural vulnerability of each school. Educational information will be distributed for the school headmasters to share with their teachers and students. They will be encouraged to include this material as part of the curriculum. The headmasters will be requested to complete the questionnaire after explaining the project to the school teachers.
After the seminars, we will collect the complete questionnaires and enter the answers in a database. This information will be evaluated, with the help of local structural engineers, to assess the overall vulnerability of the school buildings in the valley.

In order to measure the reliability of the survey results, approximately 10% of the schools will be visited by a structural engineer who will make his own determination of the vulnerability of the schools. His determination will be compared with those made by the Headmasters, using the simplified surveys.

A local structural engineer trained in retrofitting buildings will evaluate several representative examples of the predominant school building types. This examination will coincide with the field verification of the survey form. Local and international experts will work together to design conceptual retrofit solutions for each of the predominant structural types of schools. Costs for each type of solution will also be estimated. This work will allow a reasonable estimate to be made for the cost in money and effort for making Kathmandu Valley's schools earthquake resistant.

Three schools will be selected, one in each of the major municipalities, that are of typical construction and that face high risk from earthquakes. Only schools that have a financially feasible retrofit solution will be chosen. A local engineer will make detailed retrofits designs for these three schools. International experts will verify these designs.

Funds will be raised to retrofit the three example schools. Funds for the construction of the retrofits are expected to come from the local municipalities and the international donor community. The actual construction of the retrofits will be outside of the scope of this project, but it is strongly believed that preparing the retrofit designs will motivate the community to complete the construction process. This project will provide advice and supervision during the construction process to ensure that the retrofit designs are applied properly.

Proposals will be written based on the evaluation of the vulnerability of the Valley's schools and the recommended retrofit solutions. It is estimated that approximately 1000 schools will need retrofitting (most of the private schools are in rented structures, and therefore probably would not be interested, initially, in paying for retrofitting.) Assuming two buildings per school, this means that 2000 buildings would need retrofitting. Based on experience in other cities of developing countries and on limited experience of retrofitting in Kathmandu Valley, it is estimated that the average retrofit cost would be $10,000 per building. Thus the entire school building stock, protecting the student body and teachers and ensuring emergency response centers would cost only $40 million. While $40 million is not an insignificant amount of funding, we believe that by proposing that the cost be divided among several donors, successful proposals can be written.

The proposed project - of retrofitting some 2000 school buildings - would have long-lasting, widespread effects. It would not only increase the safety of the next generation and provide emergency shelter for displaced persons. It would raise the awareness of the public of earthquake-resistant construction. It would give an opportunity for training a generation of masons, construction managers, and inspectors on proper construction techniques. It would provide a chance to implement the recently developed building code. The training of the tradesmen could, with proper incentives, influence the construction of new structures and the retrofit of other critical structures throughout the valley.

In addition to addressing the structural safety of Kathmandu Valley's schools, the project will include additional information about earthquake in the school curriculums. Currently, the Kathmandu Valley school curriculum includes a chapter about the nature of earthquakes, but there is no treatment of earthquake preparedness or earthquake vulnerability. We have spoken to teachers in the Kathmandu Valley who welcome the idea of expanding the present curriculum to include earthquake preparedness. The idea is to teach something of the danger created by earthquakes and the steps one can take to reduce that danger. In the course of this project and in collaboration with a teacher we will prepare a draft of an addition to the curriculum. The draft curriculum will be distributed to be schools as a trial, feedback will be obtained, a revision will be
written and the final text will be submitted to
the Ministry of Education for inclusion in the
next textbook printing.

PUBLIC AWARENESS

The purpose of this element of the project
is to raise awareness of the earthquake risk facing
Kathmandu Valley among Nepalese (including
government officials, government
administrators, influential members of the
private sector, and the public) and among non-
Nepalese (including foreigners living in
Kathmandu, international donor organizations,
and international earthquake professional
societies). Raised awareness will provide the
fiscal and political support necessary to reduce
the risk.

The major activity in raising earthquake
awareness will be to establish that every January
15 is designated as Kathmandu Valley
earthquake day, in recognition of the occurrence
of the last earthquake tragedy to strike the valley
which occurred on January 15, 1934. The first
celebration of this day will be at the end of this
project, January 15, 1999. On this day, activities
will be organized at pre-designated open areas,
where citizens would collect after a future
earthquake.

One of the mainstays of earthquake
response plans of most densely populated cities
is use of pre-designated open areas where
survivors can gather. In some cities the
playgrounds of public schools are designated as
such areas. In Kathmandu, however, many
schools do not have playgrounds and are now
surrounded by other buildings. After the 1934
earthquake, survivors did gather in open areas,
but most of these areas are now filled with
houses. One of the purposes of this activity is to
have local authorities designate for the first time
emergency response open areas, to inform
citizens of their locations, and to train them to
go to these areas in case of emergency.

On Kathmandu Valley Earthquake Day,
there will be displays in the open areas
explaining some common aspects of earthquake
risk in Kathmandu Valley. There will also be
information booths to dispense information
about non-structural hazards in the home and
workplace, and what to do in case of an actual
earthquake.

All school children will march from their
schools (most of which do not have open areas
adjoining them) to these open areas to be present
at 2:00pm, the time of the 1934 event. The
marching of the students will be highly visible to
other citizens and should attract attention to
the activities in the pre-designated open areas.

The project will be requesting the different
ministries and departments of His Majesty’s
Government of Nepal, as well as the
municipalities, the village development
committees and the communities for
cooperation, participation and patronage.

Once this annual event is firmly established,
it can be extended to other major towns in Nepal,
recognizing that the majority of Nepalese live
outside Kathmandu and are also subject to great
earthquake risk. Some of the written materials
developed for the Kathmandu Valley Earthquake
Day may be appropriate for use outside the
Valley, but new material will have to be
developed to address rural conditions.

INSTITUTION BUILDING AND
TRAINING

The Municipality of Kathmandu City has
indicated a desire to establish an office of
Disaster Management. It has funding to create
this office, but needs advice on how this office
should be organized and staffed. This project will
provide that advice, by sending an experienced
emergency response official from the US to
consult for one week. Representatives of Lalitpur
and Bhaktapur have also expressed similar
desire. They will also be invited to attend the
training provided to Kathmandu City, in the
hopes that these cities may also see the need to
create such offices.

Grant-writing awards

This project has allocated funds to support
the writing of 10 proposals to address the
earthquake vulnerability of privately owned
buildings. After the workshop in which an
Action Plan has been developed, NSET will announce
a contest for the best ideas for proposals to reduce
the vulnerability of privately owned buildings.
People will be invited to submit short (e.g., 3
page) descriptions of their ideas. A committee
of experts selected by NSET will choose the 10
ideas judged to have the best chance to be funded (members of the committee will not have connections with the winners). NSET will provide a total of $400 to each winner to support the more elaborate process of writing a complete proposal for submission to international donors ($200 will be awarded initially, and the remaining $200 when the completed proposal is accepted). NSET and GeoHazards International will provide advice to assist in the writing of the proposals.

The National Society of Earthquake Technology of Nepal (NSET)

Another focus of our institution-building activities will be the NSET, which is the national member of the International Association for Earthquake Engineering. It is developing as the depository of information on earthquake engineering and earthquake disaster management in Nepal. The Society will play increasingly important role in the Urban Disaster Mitigation Network, which AUDMP/ADPC has endeavoured to establish.

National Disaster Management Training

The project will fund the attendance of approximately 10 Nepali locals to the national training program(s) proposed to be conducted by Nepalese training institutions in Nepal. Asian Disaster Preparedness Center (ADPC) will be assisting Nepalese training institution(s), as part of the Asian Urban Disaster Management Program (AUDMP), to develop capabilities in conducting training programs in aspects of disaster management. Earthquake, Flood and Landslide are likely to be the hazards together with general disaster management as courses to be offered in the program. It is expected that at least one of such programs will be conducted during the project period. NSET will be assisting both the ADPC and the Nepalese training institutions in the selection of the candidates to the training program and by providing resource persons.

The Project expects to raise funds from in-kind contributors to this project for sponsoring participation of 10 more individuals for this training program.

PROJECT MANAGEMENT

Overall review of this project will be provided by an Advisory Committee and two sub-committees, which will meet regularly throughout the following 18 months. The Advisory Committees consist of the Management Committee of NSET and representatives of government and non-government organizations, international donor agencies, municipality mayors, and the mayors of sister cities. The advisory committees will be the forums for addressing suggestions and critiques of the project.

Tsho Rolpa Glacier Lake

P.K. Mool
International Centre for Integrated Mountain Development (ICIMOD)
Jawalakhel, Lalitpur, Nepal

Tsho Rolpa Glacier Lake is situated at the source of the Rolwaling Khola in the Rolwaling Valley, a tributary of Tana Koshi in the Dolakha District of Nepal. The detailed and long-term investigation of the Tsho Rolpa Glacier Lake was started in 1993 and (the present author) considered as a model lake for study and mitigation. Based on available maps, satellite imageries, field surveys, the development of this lake was studied.

The lake has developed from 0.23 sq km (1959) to 1.39 sq km (WECs, 1994). It can be concluded that the rate of area increase has been accelerated. The present maximum depth of the lake is 132 m (WECs, 1993) and the stored water volume is 76.6 million cubic meter (WECs, 1994). The deeper portions are closer to the glacier. The average depth is about 3 km long and about 0.5 km wide. The lake water level is about 4580 m from mean sea level (about 4550 m asl in FinnMap).
The lake is dammed by moraine (ice-cored-moraine) formed during the advancing phase of Trakarding Glacier during the last glaciation ‘Little Ice Age’ (approx. 1550 to 1850 AD period). Rakarding Glacier, the main steam of the confluent valley glacier system in the area started retreating actively around 1950AD. The Tsho Rolpa Glacier Lake gradually developed dammed by the unconsolidated moraine and with some dead ice left behind by the glacier while retreat. The Tsho Rolpa Glacier Lake might have started forming around 1950 AD. The end moraine is about 150 m from the dam crest to the toe at the Rolwaling Kholo. (The base width at the dam is estimated at least half a kilometre wide). Few islands are there at the lower part of the lake nearer to the end moraine (or as the part of end moraine). The presence of thick dead-ice-mass at a depth of 5 to 10 m under the lake bottom near end moraine is reported. The ice-mass also does exist just near the surface at the end moraine only 4 to 6 m in depth (WEGS, 1995). The deepening (bottom sinking) rate of the lake near the island is reported 25 cm per year.

There are seven leakage points reported from the outer wall of the end moraine dam, three at right bank and four at left bank of the outflow. The leakage points are about 50 m below lake level. The lake is frozen during the mid winter period. The minimum discharge recorded at the outlet is 0.05 cubic meter per second (12 March 1994), 0.09 cubic meters per second (23 March 1995), and the maximum discharge at the outlet recorded is 19.0 cubic meter per sec (17 July 1993), 16.4 cubic meters per second (2 July 1994). The annual amount of lake discharge calculated is 95.5 million cubic meter which corresponds to the average discharge of 3.03 cubic meter per sec.

The discharge at the outlet on 14 June 1993 is 3.12 cubic meter per sec, at Naar (at 4183 m asl elevation and 4 km downstream from the lake) on 17 June 1993 is 14.12 cubic meter per sec, at Bedding (at 3693 m asl elevation and 10 km downstream from the lake) on 19 June 1993 is 27.14 cubic meter per sec. At most of the upper part of the Rolwaling Valley is wider and the lower parts are narrower as well as steeper. From the lake (4580 m asl) to the Rolwaling Khola junction with Tama Koshi at Chetchet (1380 m asl) is about 26 km, and to the Khimi Khola junction with Tama Koshi (590 m asl) is about 75 km. Tama Koshi downstream from Rolwaling Khola confluence is wider and gentler in slope.

The tongue of the debris covered Trakarding glacier in contact with the lake seems very thick. There exists several supra-glacier-ponds at the Trakarding glacier and most of them are drained into the lake. There are several cracks at the tongue of the glacier. The glacier is retreating relatively fast. And the glacier retreat rate is about 100 m per year. The lake volume is increasing every year due to glacier retreat, deepening of the lake, narrowing of the damming moraines. Looking at the present day lake development and comparative studies with the other similar glacier lakes in the Himalaya, the Tsho Rolpa Glacier Lake is definitely a potentially dangerous lake as the source of the glacier lake outburst flooding.

The study of the glacier lakes in Nepal started since 1985 by WEC/HMG-N with the support of CIDA (WERDEP, WISP) until 1996. The first professional field investigation of the Tsho Rolpa Glacier Lake was carried out voluntarily for the Netherlands-Nepal Association of Amsterdam by Dr. Michel Damen of ITC, the Netherlands in 1992. In 1993 the detail study of the lake and the Rolwaling Valley under the WECs was initiated. Technical and some financial supports were also made available by JICA from 1990 to 1996 for the study of glacier and glacier lakes in Nepal. A test siphon system at the lake were provided by WAVEN Company of the Netherlands through the effort of the Netherlands-Nepal Association at Amsterdam, and installed at the site successfully in 1995 to test the materials and design mechanisms. That was followed by an assurance from the Netherlands Government for the financial support for the mitigation work at the lake. The Netherlands fellowships to six Nepalese students were provided in 1995/96 to carry on the postgraduate diploma course on the possible glacier lake outburst flood hazard study in Rolwaling valley. Furthermore, two similar fellowship were provided to Nepalese in 1996/97 for MSc course at the Netherlands for glacier lake studies in Nepal. In 1996 JICA support for the study of the lake in Nepal was terminated.
During the period 1993 to 1996, several professionals and students from different countries studied the Tsho Rolpa Glacier Lake. Much attention were focused during 1997 summer on the national and international level to the Tsho Rolpa Glacier Lake.

It is very difficult to predict the level of danger and forecast how and when the outburst of the glacier lakes will take place, without detailed multi-disciplinary investigations of the total environment of the lake and associated surrounding features in total. We are certain that the Tsho Rolpa Glacier Lake will burst out in future, but it is not yet understandable about the detail mechanism of possible failure and exactly when will that happen. Detailed, careful and continuous monitoring of the lake is very important right from now on. Suitable mitigation measures must be taken quickly. Any mitigation measure to be taken in near future must be very carefully planned so that no artificial/mannmade triggering factor create the outburst and ultimately uncontrolled hazard. The remoteness, harsher terrain conditions, limitation of other physical and technical factors need consideration while implementation of the mitigation works.

The early warning system, timely public awareness and initiation of some mitigation activities undertaken during the summer of 1997 by the Ministry of Home Affairs of His Majesty's Government of Nepal is appreciable. It is recommended for more coordination and planning for the effective technical and management to conduct the careful and timely implementation of the mitigation works.

REFERENCES

WECS; 1994; Report for the field investigation on the Tsho Rolpa Glacier, Rolwaling Valley, February 1993 - June 1994; WECS N 551.489 KAD.
WECS; 1995; Electrical Resistively Exploration at Tsho Rolpa End Moraine; WECS N551.489 OYO.

Disasters in Butwal, western Nepal

Rabindra Thanju
Hydroconsult Department
Butwal Power Company, Lalitpur, Nepal

ABSTRACT

As one of the youngest mountain in the Himalayas, the Siwaliks severely suffers from potential landslides, debris flow, rock falls, erosion, etc. and therefore considered as a disaster prone zone. The geology of Siwaliks is fragile, which certainly demands appropriate attention for environment-friendly design in any development activities. It can hardly be believed that any infrastructures could last for long when the area is governed by unstable geological structures. Natural forces as well as human interventions have been the major factors which have induced disasters.

A huge landslide at right bank of the Tinau River at Butwal destroyed a reinforced concrete bridge in 1978. The slide occurred in the rocks with the intercalated sequence of sandstone and mudstone. This area is located near the Main Frontal Thrust (MFT).

This paper outlines the existing fragile situation in the city of Burwal and suggests some possible mitigation measures.

INTRODUCTION

The city of Butwal, situated on the alluvial fan of the Tinau River is surrounded on three sides by gently sloping hills of the Siwaliks (Churia range) and Terai plain lies to the South. After a week of an incessant rains, a huge landslide occurred in 1978 on right bank of the Tinau River, destroying a NRs. 5 million worth reinforced concrete bridge, which linked the East-West Highway. It is worth mentioning that this bridge was destroyed even before it was
officially inaugurated. A new bridge has now been relocated about 800 m downstream from the destroyed bridge (Plate 1).

Apart from the landslide (1978) that destroyed the bridge, some other disasters that have occurred in Butwal are as follows:
- In 1970 (2027 BS), a huge flood in the Tnau River swept away many lives and property. The intense flood was due to the damming of the river few kilometers upstream.
- In 1981 and 1986, flash floods occurred in the Ghuhe Khola, west of Butwal causing severe damage to lives and property.
- A debris flow occurred in 1986 in north of the Butwal Multiple Campus resulting in temporary relocation of the population.
- The landslide triggered in 1991 near the confluence of the Sahasra Stream and the Tnau River, poured huge volume of debris into the Tnau River. This area is still prone to landslide damming.

GEOLOGY AND FACTORS CAUSING LANDSLIDES

An active fault, the Main Frontal Thrust (MFT) runs along the southern most foot-hills of the Churia Range and divides it from the Terai Plain to the south. The fault passes very close to Butwal. The rock sequence comprises of sandstone and mudstone. The rocks were deposited in the process of the Himalayan upheaval.

Recent terrace deposits are also observed on the southern extension to the east and west part of the city. The entire terrain to the west and east of the Tnau river is an ancient landslide. It can be seen as an irregular shaped hill with bulge and steep scars. New scars are developing rapidly in the area and are now on the verge of failure.

Most of the landslides were a reactivation of old landslides mantling the old scarp. A study conducted in the area has shown that the varied and fragile rock conditions, severe deforestation and the ground water were the main factors that caused the landslide. During the construction of the road the toe of the hill was cut and the unstable zone lost the lateral support. During the heavy rainfall water percolated through the weak and fragile rock and saturated the thick bed of mudstone which developed pore water pressure triggering the failure.

Plate 1: City situated on the alluvial fan of the Tnau River and the Southern most foot-hill of the Churia range. View of the relocated bridge. View toward SSW.
PROPOSED MITIGATION MEASURES

The number of slide prone area mostly at the foot hills causing severe problems are mainly due to water seepage. On priority basis those hills are to be treated for slope stability.

Groundwater should be drained out through horizontal drain holes, before the water gets down into the bottom and moving along the slip surface. The drain holes of about 35-50 mm diameter can be drilled with the help of handheld pneumatic drill hammer; and then perforated HDP pipe could be installed.

The rock slide occurred in the intercalated sequence of mudstone and sandstone on the way from Butwal to Tansen (Plate 2) need to be treated for stability. The mudstone layers get easily eroded by rain and the blocks of sandstone remain hanging and can fall anytime. Those weaker layer are to be protected first with shotcrete (sprayed concrete) application with provision for weep holes.

Since the area possesses numerous old landslides, shallow seated instability and erosion on slopes are common. The new scars have been formed every monsoon which are later reactivated and trigger landslides. The scars are frequent in the southern parts of the Churia hills. The bio-engineering methods would be quite effective to reduced such risk of slope instability.

The farm land at the southern part of Butwal is vulnerable to river scouring (plate 1). The river is eroding those land every year. The Tinau River need to be trained (plate 1).

There are three major streams in the west of Butwal that transport huge volumes of debris. Being steep, intense floods have always been threats to the residents. Number of check dams need to be constructed across the width of the steep channels to control the debris and floods.

CONCLUSIONS AND RECOMMENDATIONS

The area lies in a geologically weak zone and therefore suffers from various disasters. Due to water percolation during the monsoon seasons slope failure can be triggered. Since the area consists of ancient landslides, any constructional disturbances may cause potential slope stability problems.

Consideration should be given for slope stability for any kind of engineering structures at this area. Hazard maps of the area should be prepared and the hazardous slopes should be monitored. The settlement in high hazard zones should be relocated to safer places.

Plate 3: The rock slide in the intercalated sequence of mudstone and sandstone. View toward NE.
We provide quality service in the multidisciplinary spheres:

- Engineering
- Agriculture
- Forestry
- Environmental
- Rural Development

Range of Services Include:

- sector studies
- development planning
- project identification
- project planning and preparation
- feasibility studies
- detailed design
- construction supervision
- project management
- technical assistance
- project monitoring and evaluation
- project operation and maintenance
- institutional strengthening and human resource development
INTERNATIONAL DECADE FOR NATURAL DISASTER REDUCTION
Training cum Workshop on Natural Disaster Reduction
(9-10 December, 1997)

To commemorate the International Decade for Natural Disaster Reduction (IDNDR) Day - 1997, Nepal Geological Society in collaboration with HMG/Ministry of Home, UNDP/Nepal, Lutheran World Service/Nepal and National Society of Earthquake Technology (NSET) organised the Inaugural session was chaired by Mr. C.S. Basnet, Joint Secretary, Ministry of Education. In the beginning of the programme, Dr. B.N. Uperti, President, Nepal Geological Society delivered the welcome speech and highlighted on the

Participants listening to a lecture during the Training cum Workshop

a short Training cum Workshop on Natural Disaster Reduction to the Highschool Teachers of Kathmandu Valley in the auditorium of Nepal Administrative Staff College on 9-10 December 1997. The training was participated by 90 teachers from High Schools based in Kathmandu, 7 officers from Ministry of Education and 3 personnels from Municipalities.

The workshop was inaugurated by Dr. C.K. Sharma, Academician, RONAST and objective of the training. Dr. C.K. Sharma, Chief Guest and Mr. Basnet, Chairman of the session expressed their feelings and appreciated the programme organised by Nepal Geological Society.

Inaugural session was followed by the lecture session. Dr. B.N. Uperti was the first lecturer who delivered a lecture on Introduction to the Physiography and Geology of the Nepal Himalaya. It was followed by another important lecture by
Mr. J.K. Shakya, Joint Secretary, Ministry of Home, on Disaster Management in Nepal. In the afternoon session, Dr. M.R. Dhital, Lecturer, Central Department of Geology, Tribhuvan University, gave a lecture on Landslide Hazards and its Mitigation in Nepal and P.K. Mool, Geologist, ICIMOD delivered a lecture on Glacial Lake Outburst Flood (GLOF) disaster in Nepal.

The next day on 10th December in the morning session Mr. G.R. Chitrakar, Geologist, Department of Mines and Geology gave an introductory lecture on Earthquake Seismology and Seismological Studies in Nepal. It was followed by a lecture by Mr. M. Nakarmi, Member, National Society of Earthquake Technology, presented a review on Historical Earthquake in Nepal and Disaster Management. In the afternoon session, Mr. A.M. Dixit, Engineering Geologist and Secretary NSET delivered a lecture on Earthquake Disaster Mitigation Programmes in Nepal. Mr. Bimala Rijal, Lutheran World Service/Nepal delivered a lecture on Developing School Earthquake Safety Programme. During the training slides and documentary films related to various types of hazards, and their effects were also shown to the participants.

At the end of the Training, participants expressed their feeling and extended their thanks to Nepal Geological Society and other organisation who took initiation to organise this valuable programme. Within two days time, they learned many interesting geological phenomena and their effects. They were highly benefited from this training. Such training should be organised regularly.

Best Wishes and Hearty Felicitations on the occasion of Happy New Year 2055

Dear Clients, Professionals and Engineers,

East Drilling Company (P) Ltd. has manifested in the horizon of engineering realm with the ambition to discharge services to you in the geological sector by sub-soil exploration for Engineering purposes.

Your invaluable cooperation will enable us to cherish the future. Our sincere thanks to all the well-wishers.

EAST DRILLING COMPANY (P) LTD.
Basundhara Ring Road, Dhapasi
Tel: 419 905, Telex: 2276 HOSANG NP
Fax: 977-1-417895
GPO Box 1192, Kathmandu
Second Nepal Geological Congress
11-13 November, 1997
Kathmandu

The Nepal Geological Society successfully organised the Second Nepal Geological Congress in Kathmandu from 11-13 November, 1997. The Chairman of the National Assembly (Upper House of Parliament) of Nepal, Rt. Honourable Mr. B.B. Karki inaugurated the Congress. In his inaugural speech, the president of the Nepal Geological Society and the convenor of the Congress Dr. B.N. Upreti pointed out the very limited opportunities available for interaction among the geoscientists of this region due to lack of forum for regular meeting and sharing of scientific knowledge and research findings. He expressed the view that regular organization of congress like this will greatly help geoscientists of this region to bring closer together.

During the inaugural programme, Mr. P.B. Malla, former Director General of Bureau of Mines and the first mining engineer of Nepal, was awarded the Honorary Membership of the Nepal Geological Society. This honour of the Society is given to any distinguished geoscientist who has significantly contributed to geoscientific research in the Himalaya and the adjacent regions. Previous recipients of this honour were the late Professor P. Bordet (France) and the late Dr. C.K. Sharma (Nepal).

The Congress was participated by 250 geoscientists from 11 different countries (namely Austria, Bangladesh, Canada, China, France, Germany, India, Japan, Nepal, Pakistan, and USA). A total of 125 abstracts were received which were edited and published in the special issue of the Journal of Nepal Geological Society (vol. 16). The Congress sessions were divided into (i) regional geology and tectonics, (ii) hydrogeology, (iii) economic geology and (iv) geomorphology, engineering geology & environmental geology.

There were 76 oral and 7 poster presentations in the Congress. Two keynote papers were also presented. The first was by Dr. S.K. Acharya, Director General of the Geological Survey of India on the “Role of Tectonics and concealed Tertiary foreland rocks in formations of domes in eastern Himalaya and eastern syntaxis” and the second was by Dr. R.P. Bashyal, Deputy Director General of the Department of Mines and Geology, Nepal on “Petroleum exploration promotion in Nepal.”

A post-congress geological field excursion was organised from Kathmandu to Kodari (Nepal-China border).

In the concluding session, Dr. Aftab A. Butt, Professor, Institute of Geology, Punjab University, Pakistan, Mr. S.K. Acharya, Director General, Geological Survey of India, Dr. Fazlul Karim, Bangladesh, Dr. K. Arita, Professor, Hokaido University, Japan and Dr. C.F. Uhlir, Austria and representative from China expressed their feelings about the Congress. They congratulated to the NGS for successful completion of the Congress and extended their thanks to the organising. At the end Dr. B.N. Upreti presented his concluding remarks. He proposed to hold HKT International Workshop in Kathmandu, Nepal on the occasion of 25th Anniversary of NGS in 2004.

Welcome Speech by Dr. B.N. Upreti, President, Nepal Geological Society

Respected Chairman of this Inaugural Session Dr. Bholu Nath Chalise,
Respected Chief Guest Rt. Honourable Mr. Beni Bahadur Karki,
Chairman National Assembly;
Mr. P.B. Malla, former Director General of Bureau of Mines
Distinguished Participants;
Fellow members of Nepal Geological Society;
Ladies and Gentlemen!

It gives me extreme pleasure to welcome you all this morning to the inaugural ceremony of the Second Nepal Geological Congress and the presentation of the award of Honorary Membership of the Nepal Geological Society. To all the participants from our friendly countries- warm welcome to Kathmandu and to this congress.

In August 1995, little over two years before, Nepal Geological Society had organized the First Nepal Geological Congress to observe the 15th anniversary of its establishment. Subsequently it was decided that the congress should be a regular event of the Society. This Second congress is thus the continuation in this series.
We will now continue to organize this congress in every two to three years interval in future also.

I may mention here that the Nepal Geological Society is more than just a national Society. It has over one third of its members form this region and overseas. In addition to the Nepalese Members, in fact, many of the participants who are present today in this hall coming from various countries are the members of Nepal Geological Society. We are thankful to all those members and very much appreciate for their goodwill and support to the Nepal Geological Society by way of attending this Congress.

Mr. Chairman,

Today we live in so called global village. But it is a matter of concern that we geoscientists particularly of this region are very much confined in ourselves, and adequate interaction and forum for regular meeting and exchange of scientific knowledge and research findings are very limited. We believe that congress like this will definitely help to break this barrier and bring together the geoscientists of this region. Science can only grow with the regular sharing of information and knowledge. Today, the concept of regional cooperation is catching up. I think we the geoscientists should also take this opportunity and expand our grounds of cooperation and interaction at our own levels and through the governments.

We are so pleased to find that there was such a good response to this Congress from the geoscientists of this region and overseas. We have received over 125 abstracts for the presentation in the congress from nine different countries (namely Austria, Bangladesh, China, France, Germany, India, Japan, Pakistan and Nepal). We have over 200 participants in this congress including Nepalese participants. The technical sessions will run for three full days with parallel sessions. The papers presented in the congress will be published in the Proceeding of the Congress as a special issue of the Journal of Nepal Geological Society and will come out by November 1998.

During the organization of this congress, we have received tremendous support and encouragements from many national and international organizations, universities and government organizations. I am extremely thankful to all those universities, Geological Surveys, Science academies and Research Institutes who took care to circulate the first and second circulars and supported their scientists to send to this Congress. I am thankful to all those institutions for this help. ICIMOD (International Centre for Integrated Mountain Development) kindly provided some fund to support candidates from HKH countires, without whose support we could not have invited many of our foreign participants present here.

Various organisation of his Majesty's Government of Nepal, namely Department of Mines and Geology, Department of Irrigation, Water Induced Disaster Prevention Technical Centre (DPTC), Nepal Electricity Authority, Tribhuvan University have extended their full support in all respects without whose support this congress would not have been possible to organise at this scale. We are very much thankful to them.

For all this said, this congress would not have been possible without the generous financial support of many national, international consulting and construction companies, the list of which you will find in the abstract volume. It gives me great pleasure to mention here that despite their limitations, the consulting companies have always come forward to help Nepal Geological Society in every occasions when we have approached them.

Nepal Geological Society is a volunteer organization. It is a small society with very limited resources. There are no paid staff of its own. We have tried to organize this congress to the best of our ability and resources. There may have been shortcomings in many ways. I hope you will forgive us for these shortcomings.

The three days of the congress is going to be hectic, as there are about 70 oral presentation. Though we did not like it, we had to make parallel sessions to complete the oral presentation. We also had to limit to only one oral presentation for one participant. I hope we will bear with us this rather strict code.

Finally, once again I would like to extend a warm welcome to all of you and thank you.
Inaugural Speech by Rt. Honorable Mr. Beni Bahadur Karki, Chairman of National Assembly

Mr. Chairman,
Distinguished Scientists from Friendly Countries
Participants to the Congress
Ladies and Gentlemen

It is a privilege for me to be invited to the Second Nepal Geological Congress and given the opportunity to inaugurate this important international meeting.

I congratulate the members of the Nepal Geological Society to have organized themselves with a commitment to use their knowledge in the task of national development. It is indeed a pleasure to know that you have been able to bring together scientists from SAARC region and other countries in order to devote the synergy in the geological researches of the Himalayas. It is wonderful that there has been established a tradition of international cooperation and joint efforts in uncovering the geological mysteries of the Himalayas, in revealing and developing the mineral and water resources of the region, in establishing the geological control of the environment, in uncovering the cause-effect relationship between the geological conditions and the occurrences of geological hazards. The network it has established makes it look like an international center giving opportunities to the Nepalese geoscientists to effectively communicate with their counterparts from other countries. It is highly commendable that the Nepal Geological Society has been publishing a scientific journal and a News Bulletin, which have worldwide circulation. This is a substantial achievement for the scientific community of a country, which is faced with a multitude of problems including a tremendous lack in resources.

His Majesty’s Government of Nepal attaches high importance to such contribution of the Nepalese geoscientists in geological mapping and mineral exploration, environmental studies and mapping of natural hazards such as landslide, debris flow and earthquake, in utilization of water resources of the country and in educating and training young Nepalese by preparing appropriate training curriculum of study in the university, and in raising the general awareness on the importance of geology in the task of national development. Thanks to the geoscientists of this country, we in Nepal are applying the knowledge of geology in the planning, design and implementation of infrastructure projects such as dam, road, irrigation, hydroelectricity, water supply, town planning, and exploitation of mineral resources and construction materials such as limestones, marbles and slates. Similarly, the Nepalese geoscientists are contributing to the country much not only by their researches on natural hazards such as earthquakes, landslides, Glacier Lakes Outburst Flood but also by their recommendations for a sound and economic design for their effective mitigation. We in Nepal have been utilizing extensively the geological knowledge in the management of environmental protection works, as geological conditions constitute one of the main components of Himalayan Environment.

His Majesty’s Government of Nepal will continue looking to the earth scientists of Nepal for their help in the task of effective utilization of the mineral and water resources, in the mitigation of natural hazards, in the solution of environmental problems, in the task of infrastructure development. The government will do its best to assist this community in the development of professionalism, in facilitating regional scientific cooperation. At the same time, I request the scientists gathered here to constantly remember their responsibility to accelerate the economic development of the country and help solve the problems of poverty.

I am sure that the deliberations during the days to follow will help you take yet another step closure to revealing the geological mysteries of the Himalayas, identifying the generalities of mineral occurrences in this region, unveiling the intricate relationship between the environment and geologic processes, in identifying the effecting means for the mitigation of natural hazards and safeguarding the infrastructure.

I hope that the brief stay of our foreign guest in Kathmandu will be comfortable and pleasant.

I thank the organizers again for giving this opportunity to be with you and share some of my feelings.
Citation to Mr. P.B. Malla

Respected Mr. Pushpa Bhakta Malla,

You are the first Nepalese mining engineer of Nepal. You also were the first Director of the Nepal Bureau of Mines in 1958. As a visionary, you started a reorganization process for the Nepal Bureau of Mines and contributed to its institutional and human resources development. By this, you initiated a scientific approach towards mineral exploration and geological survey of the country.

Under your able leadership, the Nepal Bureau of Mines could start the HMG-USA cooperation in mining/geology sector in the country. This comprehensive program was instrumental in the development of basic infrastructure (laboratories, library, etc.) and trained manpower. Likewise, you could plan and implement a comprehensive program of geological survey during 1954–1958 under a Nepal-India cooperation program. A major thrust in the search and exploration of minerals in Nepal was done during your tenure as the Director of Nepal Bureau of Mines. Thus you laid down the foundation of an institution, which has developed into what we see today as the Department of Mines and Geology.

As a professional, you contributed also in the development of many mineral deposits in Nepal. You were the main architect who carried out the ground works leading to the establishment of first cement factory in Nepal—the Himal Cement Factory at Chobar in the southern part of Kathmandu. Similarly, you put your efforts in conducting the first technical appraisal of the limestone deposit of Bhaisendobhan near Hetauda under a Nepal-India cooperation program. You are the author of the discovery of the important fossils of Phulchowki area south of Kathmandu, which was later described by Hon’ble Member of Nepal Geological Society, late Prof. P. Bordet. You carried out exploration of mica deposits, Phulchowki iron deposit, several lead and zinc deposits and copper prospect of Siddhi Khani which also evidence your contribution in the field of mineral resources development. The symbol of oil exploration in Nepal—the bottle of Dailekh oil sample in the premises of the Department of Mines and Geology at Lainchaur, Kathmandu was collected by you. You have also contributed in developing mining legislation leading to the process of awarding mining lease for commercial mining of mineral resources of the country.

As a patriot, with firm belief on the important role of mineral sector in national development, you continued serving the mineral sector as an operator of a stone quarry for nearly 20 years even after your retirement from government position.

Mr. Malla! You have always been a source of inspiration for the community of earth-scientists of Nepal. Nepal Geological Society is thankful to you for your continued assistance—despite your old age you always accepted the Society’s request to lead scientific excursions to Phulchowki Danda to share your profound knowledge on the fossils and iron ore deposit there.

Nepal Geological Society feels honored to admit you into the college of luminaries of Honorable Members of the Society.

May God bless you a happy and long life.

सम्मानित सदस्य श्री पुष्पभक्त मल्लले
सम्मानित सदस्यता प्राप्त गर्दै दिनुभएको मन्त्रव्य

सम्माननीय, माननीय, भद्र महिला तथा विद्वान वर्ग

यस ध्यौँ विज्ञान Geology विषयी जीवनमा जैती विशेष उल्लेखनीय श्रेयस्कर काम गर्न सकेको होइन तापनि Nepal Geological Society बाट बाहिर विभाजको पूर्वर्ष निर्देशक ६४ वर्षो म पुष्पभक्त मल्ललाई

मान खाति गायण विविध सम्मानित क्षेत्रता प्रदान गर्न शुभ निम्न-गण दिनुभएकोमा अत्यन्त आभार सहारिक घर्यावाद

माने द धर्म आभार प्रकट गर्न दुई चार शब्द नाट यहाँ सबै उपस्थित दिनुभएको सम्मान हुनेछै।

हामी हरेको दुई विवाह भएको छै कि मनामा संसार सुन्दर गर्नेछै। मनामा नै सुन्दर, स्थिरता र संसार गर्नु
Nepalese Members of International Association of Engineering Geology and the Environment (IAEG)

List of Members with Bulletin subscription

1. Dr. Sandip Shah
   G.P.O. Box 3840
   Kathmandu, Nepal

2. Mr. Govinda Sharma Pokharel
   P.O. Box 11137
   Kathmandu, Nepal

3. Mr. Indra Raj Humagain
   P.O. Box 231
   Kathmandu, Nepal

4. Mr. Rabindra Thamjhu
   Butwal Power Company
   P.O. Box 13488
   Kathmandu, Nepal

5. Mr. Narayan Singh
   GECE Consultants (P) Ltd.
   P.O. Box 4266
   Kathmandu, Nepal

List of Members without Journal subscription:

1. Dr. B.N. Upreti
2. Mr. K.C. Manandhar (for 2 years)
3. Dr. M.R. Dhital (for 2 years)
4. Mr. G.M. Shrestha
5. Mr. D.B. Thapa
6. Mr. M.R. Poudel
7. Mr. Ram Sharma Poudel
8. Mr. K.M. Nepal
9. Dr. V. Dangol
10. Mr. K.P. Kaphle
11. Mr. J.N. Shrestha
12. Mr. A.M. Dixit
13. Mr. A. Koirala
14. Mr. K.K. Rajbhandari
15. Mr. Krishna Murari Amatya
16. Mr. A.N. Bhandari
17. Ms. Roshani Karmacharya
18. Mr. Subash Chandra Sunuwar
19. Mr. Bruce Oneill
20. Mr. Jayakar Gaucharan

Jana ne shakti, aminne haakshar ina mukti

Jay nepal, jay sansar.
Best Wishes and Hearty Felicitations

on

The Auspicious Occasion

of

New Year 2055

GANESH HIMAL LEAD ZINC PRODUCT

NEPAL METAL CO. LTD.

Gyaneshwor, P.O. Box 468
Kathmandu, Nepal
Geologist's expertise going to the waste*

Dipendra Nath Sharma

Under the mind-blowing hot sun, a man with his unparalleled devotion for work creeps along a narrow gorge and bravely climbs a cliff with a hammer hanging from his belt and a Brunton Compass in his heavy field bag. There, by the side of the cliff, he finds a suitable rock exposure whose dip and strike he measures with utmost care. All day long, he walks over the thorns with his body bathed in perspiration and keeps on recording each and every detail that comes across him and that he judges is necessary for his table-work. Got him? He is no one but the technical creature having a lust for the science of earth. His name—the Geologist!

Seminars, symposiums and workshops organised at the heart of the country unequivocally acknowledge that the geologists are the need of the day. A country like Nepal, which is situated at the earthquake prone zone and which is susceptible to regular landslides cannot afford to take risks of getting into construction works without proper geological investigations, no matter how small the projects are. But the pity lies in the fact that the responsible authorities do not seem to take the matter seriously.

After carrying out an onerous task of geological investigations along the Mai River banks, Mr. Prabhat Sharma, a recent graduate in geology from the Tribhuvan University (TU), a devoted technocrat who represents the new breed of talent and intelligence, confesses in frustration and anguish, "We, the geologists in Nepal, are being cornered by our planners."

And he has ample evidence to prove his point.

Jogimara, an ever hungry monster, opens its wide mouth and swallows hundreds of innocent people every year. Several efforts made by the Department of Roads to put this demon to an end have gone in vain. No retaining wall built by the Department has yet been able to check the Jogimara landslide. It has created such a grave situation that the Department of Roads, in absence of any departmental geologist, has been compelled to plead for the help from the experts of the International Centre for Integrated Mountain Development (ICIMOD). It is really shocking to know that the Department of Roads is supposed to be functioning without a geologist at the table and in the field. Many more Jogimara fame accidents are bound to come into the scenario, if the Department keeps on denouncing the role of geologists.

In a highly terrain like Nepal's, routes always require cuttings and hence blastings. Blastings carried out without proper geological investigations are bound to create problems. Thoug a lot of debate is in the air about the construction of the Hetananda-Kathmandu tunnel road, a time, let us pray, will come when the travel time minimization philosophy gets clicked and the dream gets realized. But the construction of a tunnel road without a geologist cannot even be imagined.

Water Induced Disaster Prevention Technical Centre (DPTC), which is a project running under the Ministry of Water Resources (MOWR) and which has been concentrating more on landslides has no geologist. It is really hard to imagine how the DPTC has been working out the causes, conditions orientations and characteristics of the landslides and how it has been recommending the required preventive measures for the landslides without technical expertise in the science of earth.

The National Planning Commission of a mountainous country like Nepal, whose 83 per cent of the land is occupied by hills and mountains, which is fragile being subjected to enormous tectonic forces and which possesses deep gorges, fractures, joints, faults contributing to a structurally complex terrain, has lots of geographers but not a single geologist at the hand.

At a stage, when the entire world has been concentrating seriously on environmental protection, formation of the Environment Council has to be welcomed by one and all. Environmentalists in Nepal have been focussing more on plants and animals and polluted air and water ignoring the real cause of environmental pollution, viz., the landslides, earthquakes, soil erosion, volcanism and land use pattern, for

* Source: The Rising Nepal, May 13, 1994
which environmental geologists are being consulted all over the world. But in Nepal, the idea of making use of environmental geologists has not yet been materialized. The Non-Government Organizations (NGOs) spreading like mushrooms and being concerned with environmental protection have not yet found it necessary to exploit the geological expertise.

Soil Conservation Department of the Ministry of Forest and Soil Conservation has few such posts for geologists which have been vacant for many years, but the concerned authority has not yet taken any initiative to fill up the vacancy. Agricultural geologists, who could serve more to the development of agricultural in Nepal, have no recognition at the government as well as non-government levels.

The Research Centre for Applied Science and Technology (RECAST), run by the TU, consists of scientists from various fields like Zoologists, Botanists, Chemists, Physicists, etc. but not a single geologist. The Pulchowk Engineering Campus, which produces ninety-six civil engineers every year has no such permanent lecturer in geology who could effectively deliver the fundamentals of the science of earth to the enthusiastic breed of “would be engineers”. Similarly, Forest Institutes in Nepal have ignored the importance of geology in forestry.

Consultancies, on the other hand, are found to be inclined towards manipulating and submitting reports without proper geological investigations rather than making use of geological expertise.

A lot of research has been carried out by foreign as well as native geologists on the Himalayas. Nepal Himalaya which occupies the central portion (800km) of the Himalayan arc has always been a matter of interest for many geologists around the world. The more the researches are being carried out the more the mind-riddling puzzles are being revealed. So, it would be a wise thinking on our part to work for the establishment of an institute of Himalayan geology in Nepal.

Today's world is the world of expertise. In this regard, experts from each and every field are to be honoured, their worth evaluated. Nepal, as mentioned earlier, needs the service of geologists for the sustainable infrastructure development. So, it is time that the planners realize the importance of geologists and recognize them.

Best Wishes and Hearty Felicitations to Nepal Geological Society

MASINA CONTINENTAL ASSOCIATES (P.) LTD.

We provide services in Civil • Geotech • Surveying • etc.

P O Box 2995, Baneshwor, Kathmandu, Nepal, Telephone 473163, Fax 977 1 248083
Earth system science for the 21st Century: towards truly sustainable development*

W. S. Fyfe

Our ultimate resources come from the Sun and the Earth system. At this time we face a world crisis in energy, water and soil resources. Global pollution problems are increasing in almost all nations and our climate is changing. There is an urgent need to use our vast knowledge with a new wisdom and this requires new integrated teams of experts to provide the best alternatives for the needed new development problems. These teams must include economists, engineers and a broad spectrum of scientists. Today it is possible to produce clean energy, stop soil erosion, clean water and reduce and use wastes of many types. There is a great need to improve natural science education at all levels. All people must know how our planet works and that fluctuations, some inevitable, some controllable, will occur and that we must prepare for them. And it is clear that protecting the environment, eliminating pollution, preserving biodiversity is good economics. Ecology-Economy cannot be separated.

INTRODUCTION

It is difficult to comprehend the future impact on the earth system the human population increase expected next century. Barring some vast (but not impossible) catastrophe, our numbers will reach over 10 billion. Most of this increased population will live in urban areas with all the complex needs such as improved transport systems, geohazard reduction, and waste management. The situation was well stated recently by Koshland (the former editor of Science) 'First of all, it is important to identify the main villain as overpopulation. In the good old days (viewed through the myopia of nostalgia), the water, air, flora and fauna existed in an idyllic utopia. But, in truth, there were famine, starvation, horses and buggies that contributed to pollution, fireplaces that spewed forth soot from burning soft coal, and water contaminated with microorganisms. The humans were so few and the land so vast, that these insults to nature could be absorbed without serious consequence. That is no longer true.'

There is a leading question which all educated world citizens must ask. Can we provide adequately for the next five billion without destruction of the most fundamental components of the life support system? This century has been truly remarkable. The scientific giants of the early 1900s (Einstein, Rutherford, Planck, Bohr,...) wrote the rules of modern science and technology, the relations between energy and matter. Their work has stood the test of time remarkably. Their new science led to our present age of observation and information technologies. In large part they contributed to the new medical science which has led to our greater average longevity and the dramatic decline in infant deaths around the world, trends which continue. At the same time, our information systems, in particular television, have led to a new age of expectation. In the forties, Aldous Huxley wrote that we have treated nature with greed, violence and incomprehension. Our planet has become small, and our future common, as stressed in the famous report of the World Commission on Environment and Development, (1987), the Bruntland Report.

The word 'sustainable' has become popular. It is a simple concept and requires the answer to a simple question—'Will I leave the planet in better condition for all species who support me and follow me?' In the recent report from the New Delhi Population Summit (Graham-Smith, 1994), Sir Michael Atiyah, president of the Royal Society of London wrote, 'Most of the problems we face are ultimately consequences of the progress of science, so we must acknowledge a collective responsibility. Fortunately, science also opens up possibilities of alleviating our problems, and we must see that these are pursued.' In the same volume, Sir Crispin Tickell, former British Ambassador to the U.N. wrote 'It would be nice to think that the solutions to some of our present problems could be drawn from past experience, but in this case the past is

* Source: Episodes, Vol. 20, no. 1
a poor guide to the future. Our current situation is unique.

When we consider the life support system and the future problems faced by *Homo sapiens*, certain key areas are obvious. They include (in no order of priority):
- atmospheric chemistry;
- the radiation field;
- energy resources;
- water resources;
- food resources;
- materials;
- waste management;
- geo-fluctuations, climate fluctuations, and the need for surplus, and
- biodiversity for security.

In these brief notes I wish to consider the emerging role of the earth system sciences in achieving sustainable development and providing the necessary resources for all people. It is interesting to note some recent comments in leading journals: ‘Earth Sciences. Job prospects on shaky ground’ (Holden, 1994); ‘Geological programs come under threat’ (Macilwain, 1994); ‘Geology is under attack’ (Rossbach, 1995).

Are the earth sciences not needed for future sustainable development (Fyfe, 1994)? In a recent editorial in *Chemical Engineering News* (1995), Heylin quotes Stokes of Princeton, ‘Better prospects for a new contract for science lie with common recognition of the importance of what he calls use-inspired basic research. He says basic science and technology move ahead together, each, in turn, inspiring and supporting the other in an endless overlapping process. At times, basic science does indeed trigger new technologies, even new industries. Equally, technological needs inspire basic research’.

During the periods of conflict as in the period 1939-45, most scientists became applied scientists. But today, we face a global crisis of far greater magnitude than that of the last world war, the crisis of our survival and responsibility to future generations. We must respond.

**Geologic Structures—recent events**

As never before, there is need for highly precise geological mapping on scales appropriate to the development problems being considered. Such maps must be precise in describing the timing of events and must be precise in three dimensions. New dating techniques such as those which use cosmic ray induced isotopes can give a new precision on recent fault-fracture motions, surface erosion and the like. For example, if we consider the growth of megacities, the geological knowledge required to prevent or reduce costly engineering mistakes (e.g. Kobe, Japan) to provide and protect water, to prevent pollution etc., is of a detail and range far beyond most present mapping systems. Recent studies, as with the German deep drilling experiment (the KTB), clearly show that our techniques for deep remote sensing are far from adequate today. I was recently on a field trip with an excellent group of Portuguese (Lisbon University) structural geologists. They were concerned with mapping a region of some interest in terms of a site for nuclear waste disposal. The region was well known for some major fault structures. But their detailed studies, clearly revealed the complexity of the stress patterns and showed that micro-fault systems were present with a frequency distribution of tens of meters. This type of detail is essential to the planning of any major engineering project. At a recent meeting in Norway, Swedish geologists reported on the use of good maps in planning the exact location of new highways resulting in large cost reductions. I will return to other aspects of the types of information required in modern maps below with reference to specific development problems.

**Energy problems**

At the present time, the bulk of world energy comes from the combustion of coal, oil, and gas; all these resources are non-sustainable, natural capital. The thoughtless waste of such valuable resources is a global disaster. Of the fossil carbon sources, only coal and certain types of carbon-rich sediments have resources of interest for more than a few decades. In a general way, there has been little change in burning technologies: –add air–burn–and exhaust to the atmosphere.

There is no need here to discuss the potential future impacts of the climate changes related to the fact that we have rapidly changed the chemistry of the atmosphere. We normally discuss CO₂, CH₄, and acid compounds. But as we have stressed previously (Fyfe and Powell, 1995), many coals contain significant quantities of all halogens F, Cl, Br, I and the steadily increasing ozone catastrophe may be influenced by such combustion. In 1997 ozone hole over the Arctic reached a record size. Also, time after time, the detailed chemistry of coal and coal ash,
is not well known and many coals have significant quantities of elements like uranium and arsenic, and an array of heavy metals immobilized in the reducing, sulfur-rich, medium of coal. Some create problems but many may be useful.

It is certain that nations like China and India will depend on coal for decades to come. Can we change the technology at reasonable cost? Can we reduce the environmental impact of coal combustion? I think the answer is positive. We have been studying the fixation of CO₂ and organics in the cracked, permeable basalts in the caves of Kauai, Hawaii, deep beneath a very heavy forest cover. Every crack is covered with white stuff (silica, clays, carbonates) formed by the action of organics with the basalt, a process mediated by ubiquitous bacterial biofilms. We now know that bacteria can live to depths of over four kilometers, up to 110°C, in favourable locations (Pedersen, 1994 and this issue p. 7). Can we use such processes to fix the exhaust gases of coal combustion? For sure, certain rock types will be better than others and volcanics without Ca-feldspars and other Fe-Mg phases should be ideal as in Hawaii. Recently on a field trip in China (east of Beijing), we discussed the possibility of using their rapidly exploited oil-gas fields for disposal of wastes of many types. If a basin isolate oil-gas for millions of years, it surely has capacity to isolate wastes. And generally, oil field structures are well known. A recent publication (Hitchon, 1996) discusses the possibility of combustion gas disposal in sedimentary basins (Fyfe, 1997).

The growing knowledge of the deep biosphere also raises the possibility with certain types of carbonateous sediments, of using microorganisms for in situ methane and hydrogen production. In place of opening deep mines with all the related water pollution problems could it be possible to produce bio-gas (Fyfe, 1996)?

But ultimately, the world must move to solar energy of all types (photovoltaics, wind, tidal) and geothermal energy. There is no shortage of energy sources on this planet. Wind energy use is increasing across the world and photovoltaic devices are becoming more efficient and cheaper (New Scientist, 1995). Geothermal sources are normally associated with regions of high heat flow (volcanic systems) but for some purposes (city heating, greenhouses and aquaculture systems), the normal geothermal gradient can provide background heating. All such potential use requires exact knowledge of deep geologic structures, porosity, permeability and geochemistry.

At the present time only a small fraction of world energy is provided by hydro-electricity. There are regions of the world where there is still potential with river systems (e.g. parts of Africa, Brazil). But there are problems. River flow, runoff, is necessary to keep the land surface clean, particularly with species like salts. Climate, rainfall, is not constant as we have seen dramatically in current years and in dry periods, runoff may be greatly reduced. We now know that major fluctuations and changes in runoff patterns can greatly perturb the marine biomass and even ocean current patterns which in turn can perturb local and global climates (e.g. the Younger Dryas cold event, Fyfe, 1993).

Water

According to Postal (1992), today, forty nations have a crisis of water supply. In many places, uncontrolled extraction of ground water (mining) is being used to promote non-sustainable increase in food production. In vast areas, bad water management has led to salinization of soils and massive pollution by agri-chemical residues. I was recently in Calcutta and, with their Institute for Man and the Environment, was introduced to their major problem of groundwater arsenic pollution which has led to serious health problems with very large numbers of people. Where does the arsenic come from? This problem is not solved but arsenic compounds have been used for a long time in rodenticide control.

In the developing world, there are few places where the total water cycle is adequately described. While sea level is slowly rising, in many sensitive coastal regions, land subsidence and apparent sea level rise is associated with subsidence and compaction, following the mining of groundwater. Again, exact geoscience is required to describe the water resource potential of any region and to live with the natural fluctuations in precipitation. Recently, Karl et al. (1997) have described changes in weather patterns. On a planet growing warmer there will be more evaporation and more rain somewhere. The new precipitation patterns must be described. Record floods are occurring in many places.
Soil

At this time, at least one billion humans do not have an adequate supply of well-balanced, nutritional food (Sadik, 1989). Across the world, wood is becoming an expensive and declining commodity. Despite the electronic revolution, the use of paper products is increasing (per capita, three-fold in the last 40 years). And the world’s marine resources are declining at an alarming rate. Sustainable food-fiber production depends on climate, climate fluctuations, soil quality and water resources. Knowledge from the geosciences is involved in all these parameters. Given that we are not adequately providing nutrition for the present human population, what are the prospects for the next five billion?

All organisms require a large array and balance of the chemical elements (about 50) for efficient production of the organics needed for life. The geochemistry and mineralogy of soils are critical in estimating the capacity of a soil for sustainable organic productivity. According to the Worldwatch Institute, topsoil loss globally is approaching 1% per year. The technologies exist now for erosion and salinization control but such technologies are not adequately used. But there is great need for new soil maps which clearly show good soils, soils for forests only, and leave it alone! (Fyfe, 1989; Darnley et al., 1995).

Given the chemical and physical properties of a soil, additives may greatly enhance bioproductivity. Often such additives require the addition of simple mineral materials containing species like K, Mg, Ca, P and appropriate trace metals like Co, Mo, etc. which may be critical in biofunctions like nitrogen fixation. The useful types of additives may be closely linked to soil type and climate. For many situations, as with the laterite soils of the humid tropics, slow release, mineral fertilizers (K in feldspars, rock phosphates) may be more effective and less wasteful than soluble chemical fertilizers. Geochemists and clay mineralogists must become more involved in agriculture.

Materials—minerals—mining

Advanced societies use about 20 tonnes of rock per person per year for their needs. Most is for various forms of construction, highways, buildings, ceramics, etc. Giant mining operations include those for fertilizers, ores like iron, and coal mining. It is amazing but humans in general are ignorant about where their resources come from, the impacts on the ecosphere, geosphere, hydrosphere of mining operations. With modern understanding of earth convection, our understanding of the resource base and prospecting strategies have dramatically increased. If the world needs more copper, we know where to look and we find it.

But because historically, mining technology has been careless, increasingly many large companies move to developing countries with less stringent environmental laws. For example, I was amazed when the North American Free Trade Agreement (NAFTA) was signed, it was clearly stated that local environmental regulations apply. What of the future of the use of mineral resources? For a population of at least 10 billion projected for next century, we must consider the human modification of 100 km$^3$ of rock per year. Most will be ripped from the near surface, but much from increasing depths where mining perturbs the groundwater resources.

First, the world must move to more efficient recycling and for this to be successful requires careful quality control at all stages of the use—mining to fabrication. In mining, there must first be careful 3D mapping of structures, permeability, porosity, faulting, etc. to accurately assess the environmental impacts. There is great need for extreme quality control in the extraction of ore materials. The total geochemistry must be known, the desirable and the undesirable elements. Such data must be available to plan the mining technology and to assess the environmental impact of the operation. Waste products from mining must be studied for potential uses in construction, soil re-mineralization, etc. The growing knowledge of microorganisms at depths (now over 4 km) opens a host of new technological opportunities. Silica secreting organisms might be used for permeability control. Metal secreting organisms can be used for removal of heavy metals as has been well demonstrated. And a host of new possibilities must be considered for ‘in situ’ metal extraction via sulfide oxidizing species. The same is true for ‘in situ’ methane production.
from carbonaceous sediments. With all such things there is need for cooperation between geologists, geo-microbiologists, hydrogeologists, engineers and economists. Far too little thought has been given to the end use of mines. In some cases by careful planning, these could become waste disposal sites for urban areas, a growing world problem.

I think there is no doubt, that with the correct team for planning from the start, the environmental impact of extracting resources from the crust can be vastly reduced. And I am sure that in many cases, the long term economics of the operation will be improved. We must also watch for new needs. I was interested to read in the British journal The Economist, that there is a world shortage of high purity silicon for modern electronic devices, and soon we will see vastly increased use of photovoltaics. For such purposes, there is a giant difference between 99.99% SiO₂ and 99.9999% SiO₂.

I have always been intrigued by the possibilities for use of near ocean ridge sites for metal extraction and energy production (cf the Salton Sea Thermal fields). On Canada’s well-described Juan de Fuca system, by drilling through the impermeable, sediment cover with thermal gradients of up to 300°C/km, one might simultaneously extract metals and energy.

Waste management

This century will go down in history as that of careless technologies and waste production. There is no doubt that the long term costs can be staggering (as with the arsenic pollution in India mentioned above). The complexity of modern waste is enormous, from organics, to radionuclides, urban garbage, etc. And it is amazing that the nuclear industries developed before any serious attention was given to wastes—the we will do it when necessary philosophy. Ontario, Canada, where nuclear electricity dominates the system, now estimates that it will spend at least 15 billion dollars on nuclear waste disposal in the next decades and at this time no “best” site has been proposed. And it is strange that only recently has a combustion gas like CO₂ been considered a waste product. Combustion has changed the concentration of many critical components of the Earth’s atmosphere.

I think the time has come to drastically change our philosophy on wastes. First we must precisely describe the nature of waste, chemistry, etc. Then we must search for uses for the waste and reorganize that time after time it can be a resource. Denmark recycles 97% of its paper, Canada 17%. And the secret of domestic waste management is the five minutes a day spent in separating the components. As mentioned above, we have shown that by using careful geochemistry, many types of coal ash (but not all) can be a valuable soil additive. The same is true for most urban sewage as long as it is not mixed with other toxic wastes from say the chemical industries. Again we need teams of the appropriate scientists, not just engineers! One case I would like to again emphasize is that of the gas products from combustion, CO₂, NOₓ, SOₓ, and as we have shown with halogen-bearing coals which are common, possible halogen-organics. Are the latter partly responsible for the growing problems of stratospheric ozone destruction? As mentioned above, can we dispose of these gases below ground and not simply vent to the atmosphere? The cost reduction on public health of reducing all the lung problems might well cover the additional engineering costs. Japan is seriously considering the marine dumping of CO₂ (Fyfe, 1997).

Every waste product requires unique approaches. Many wastes can be resources, and for most secure disposal is possible. For geological disposal we require a new precision in the total description of the subsurface environment.

Geo-fluctuations

There is no need here for lengthy discussion of the problems of the inevitable geo-fluctuations that occur. The Earth environment is not, never was, never will be, constant. Causes of fluctuations, the year without summer are complex but must be considered in the life support system. They imply that for security there must be surplus and there must be biodiversity. I think one can predict with certainty, that given population growth and present planning systems, the next events like the mega-volcanic eruptions of early last century, will see a vast social catastrophe unless we are prepared to plan now and face the new realities.
CONCLUSION

As world human population continues to grow, to move to over ten billion next century the need for exact geoscience must be a priority in planning the needed future development of the support systems. And there is urgent need to improve the communication and effective cooperation between all the experts in modern science and technology, and economists, engineers, politicians and all educated citizens. At this time Europe leads in demonstrations that sound economic and environmental policies are not in conflict but must form a working partnership. We must and can reduce pollution and wastes. We must recognize the limits of the Earth system, we must develop holistic natural science. Given the future numbers of humans on Earth, the cost of errors will become intolerable Earth and planetary science must and can be introduced into our school curricula at all levels with the objective of education for global responsibility.

REFERENCES


W.S. (Bill) Fyfe, the former President of IUGS, is a graduate of the University of Otago. He has been a researcher and teacher at Otago, Berkeley, London, Manchester and Western Ontario where he became Dean of the Faculty of Science. He has been awarded many academic honours in geoscience and has been a visiting lecturer or professor at numerous institutions around the world. His interest in geochemistry, and the applications of geoscience to environmental management, has taken him to developing countries in all parts of the world.
पृष्ठभूमि

तपाल्लो विषयको विद्यमान सय वर्षको आसामा छ भने राखिएको, राख्ने रो उपर रक्षकर दो-पकारिताको हो। वातावरण २००३ सालपिको प्रक्रियालाई ब्रज पकारितको भूमिका निर्धारित गरिने र परम्परामा भने हुनु। २००३ सालामा नेपाली पकारिताले सत्ता उन्मूलन गर्न पाएका पितृतरको सार्वजनिक अभियान अपनी पकारिताको पूर्णता विकासको लागि अथै पनि धेरै आधिक रणनीतिक बालकहरूको छैन।

परम्परागत पकारिता

सार्वजनिक पकारिताको उदय पर्याप्त नामो समयसम्म यसको भूमिका नपूर्ण अथवा घटनाका वर्तमान जानकारी हिलेका मात्र गर्न। घटनाधिकृत घटनाको नेपाली पकारिताले समाजको वायुधारी भ्रमणो दीनो आएको भनेको समयसम्म र घटनाको नेपाली पकारिताले भन्न सक्ने जानकारी निर्धारित गरिनेका पूर्णता विकासको लागि अथै पनि धेरै आधिक रणनीतिक बालकहरूको छैन।

फलनिर्धरण

तर यस्तो भूमिका विनाश गर्ने काम सरल भने छैन। यस्तो भूमिका निर्धारित गर्ने काममा पकारितहरूले अनेक विवरण, व्यवहारहरूको सामग्री उपलब्ध छ भने। राजनीति, अर्थशास्त्र आदि जरूरत निर्देश भन्ने भाषाको विकासमा द्वारा निर्धारित गरिन्छ। यसो भूमिका विनाश गर्ने काममा पकारितहरूले अनेक विवरण, व्यवहारहरूको सामग्री उपलब्ध छ।
(а) Асарын арван, амжилт сийрэхээ, үсэгчдээ магад:  
үүнэ эрчимтэй бетэд өгөхөөр отоодсон мординоо үндэслэлээ, энэхүү асуултын хувийн талаас гэдэг байна. Энэ нь нь тэдний үндэслэлээ, зориулалтыг тодорхойлно. Энэ нь нь жуулчидын бүх зүйл байдлыг тодорхойлно. Энэ нь нь эрчимтэй бетэд өгөхөөр отоодсон мординоо үндэслэлээ, энэ нь нь тэдний үндэслэлээ, зориулалтыг тодорхойлно. Энэ нь нь жуулчидын бүх зүйл байдлыг тодорхойлно. Энэ нь нь эрчимтэй бетэд өгөхөөр отоодсон мординоо үндэслэлээ, энэ нь нь тэдний үндэслэлээ, зориулалтыг тодорхойлно. Энэ нь нь жуулчидын бүх зүйл байдлыг тодорхойлно.

(б) Сүмчна/жанжангийн баяр:  
зөвлөгөө нэгдүгээр өөрийн өмнөхөөр ажиллаж, бүтэн болсон асуултын хувийн талаас гэдэг байна. Энэ нь нь тэдний үндэслэлээ, зориулалтыг тодорхойлно. Энэ нь нь жуулчидын бүх зүйл байдлыг тодорхойлно. Энэ нь нь эрчимтэй бетэд өгөхөөр отоодсон мординоо үндэслэлээ, энэ нь нь тэдний үндэслэлээ, зориулалтыг тодорхойлно. Энэ нь нь жуулчидын бүх зүйл байдлыг тодорхойлно.
# New Members of Nepal Geological Society

<table>
<thead>
<tr>
<th>Membership Name</th>
<th>Mailing Address</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>LM-389</strong> REGMI Kamal Raj</td>
<td>Central Department of Geology, Kirtipur</td>
</tr>
<tr>
<td><strong>LM-390</strong> SHRESTHA Bibak Kumar</td>
<td>Baneswor -34, Kathmandu</td>
</tr>
<tr>
<td><strong>LM-391</strong> PIYA Birendra</td>
<td>Dept. of Mines and Geology, Lainchaur, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>LM-392</strong> DWIVEDI Shree Kamal</td>
<td>WESC, Singha Durbar, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>M-393</strong> NAPIT Dinesh Kumar</td>
<td>Kaligandaki Hydro Power Project</td>
</tr>
<tr>
<td><strong>M-394</strong> BHATTARI Dushantha</td>
<td>Nepal Metal Company, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>LM-395</strong> SHRESTHA Puspa Lal</td>
<td>Soil, Rock and Concrete Laboratary, NEA, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>LM-396</strong> SHRESTHA Manohar</td>
<td>Department of Mines and Geology, Lainchaur, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>M-397</strong> MULMEE Mahesor Raj</td>
<td>Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>M-398</strong> DAHAL Rajan Kumar</td>
<td>Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>M-399</strong> ARYAL Arjun</td>
<td>Department of Geology, Trichandra Campus Ghatthaghar, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>LM-400</strong> FUNAKAWA Satoshi</td>
<td>JICA Nepal Office, P.O.Box. 450, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>M-401</strong> BHANDARI Babu Krishna</td>
<td>Ilam Hydropower Project, Ilam</td>
</tr>
<tr>
<td><strong>M-402</strong> PANDIT Rajesh</td>
<td>Soil, Rock and Concrete Laboratary, NEA Kathmandu, Nepal.</td>
</tr>
<tr>
<td><strong>M-403</strong> ADHIKARI Bishnu Prasad</td>
<td>Kaligandaki Hydropower Project, Kathmandu, Nepal.</td>
</tr>
<tr>
<td><strong>M-404</strong> SHRESTHA Rajendra</td>
<td>P.O.Box. 11728, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>LM-405</strong> DAHAL Khila Nath</td>
<td>Dept. of Irrigation, Jawalakhel, Lalitpur, Nepal</td>
</tr>
<tr>
<td><strong>M-406</strong> KAFLE Kumud Raj</td>
<td>Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>M-407</strong> WALI Churana Bahadur</td>
<td>Mid Western Irrigation Directorate, Birendranagar, Surkhet, Nepal</td>
</tr>
<tr>
<td><strong>M-408</strong> DHUNGEL Shashi Kumar</td>
<td>Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>LM-409</strong> MD.SULTAN-Ul-Islam</td>
<td>Dept. of Geology and Mining, University of Rajshahi, Rajshahi-6205, Bangladesh</td>
</tr>
<tr>
<td><strong>LM-410</strong> SATTAR Golam Shabbir</td>
<td>Dept. of Geology and Mining, University of Rajshahi, Rajshahi-6205, Bangladesh</td>
</tr>
<tr>
<td><strong>LM-411</strong> NEUPANE Rajendra</td>
<td>Dept. of Irrigation, GWRDP, Field Office Nepalganj</td>
</tr>
<tr>
<td><strong>LM-412</strong> ACHARYA Subhransu Kanta</td>
<td>15, Dr. Sarat Bancrjee Road, Calcutta-700029, India</td>
</tr>
<tr>
<td><strong>LM-413</strong> HIGAKI Daisuke</td>
<td>P.O.Box. 450, JICA Nepal Office, Kathmandu, Nepal</td>
</tr>
<tr>
<td><strong>LM-414</strong> PAUL S.K.</td>
<td>Wadia Institute of Himalayan Geology, Dehradun, India</td>
</tr>
</tbody>
</table>
SOIL AND WATER IS OUR MAIN CONCERN

WE DO

SITE INVESTIGATION IN ANY GEOLOGICAL FORMATIONS
LABORATORY TESTING OF SOIL, WATER, CONSTRUCTION MATERIALS
CHEMICAL AND BIOLOGICAL ANALYSIS OF ANY SUBSTANCES
FOUNDATION DESIGN AND CONSTRUCTION SUPERVISION
PILES-DESIGN AND CONSTRUCTION
DEEP OR SHALLOW WELL BORING

CIVIL ENGINEERING SURVEY, DESIGN AND CONSTRUCTION SUPERVISION

Best Wishes and
Hearty Felicitationson

Happy New Year 2055

SOIL TEST (P) LTD.
Naya Baneshwor
P.O. Box No. 2967, Kathmandu
Tel.: 223580, 224760 • Fax: 977-1-226088
Bio-data of Hon. Members of Nepal Geological Society

I. Dr. Chandra Kant Sharma

1. DATE OF BIRTH: 13.3.1936

2. QUALIFICATIONS:

<table>
<thead>
<tr>
<th>Institution</th>
<th>Year</th>
<th>Degrees</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian School of Mines, Dhanbad India</td>
<td>1954-58</td>
<td>B.Sc. (Hons)</td>
<td>Applied Geology</td>
</tr>
<tr>
<td>Aligarh Muslim University, India</td>
<td>1960-62</td>
<td>M.Sc., A.I.S.M.</td>
<td>Applied Geology, Geology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph.D.</td>
<td></td>
</tr>
</tbody>
</table>

3. MEMBERSHIPS OF PROFESSIONAL SOCIETIES:

a) National Water Well Association of USA
b) Society of Economic Geologist of USA
c) Nepal Geological Society of Nepal

4. ACADEMIC ACTIVITIES:

a) Invitee lecturer to Staff College of Nepal from time to time in the field of Water and Energy Resources.
b) Member of Instruction Committee on Geology of Tribhuvan University, Kathmandu, Nepal.
c) Member of Academic Council of Tribhuvan University for 1987-89.
d) Invitee Examiner of Nepal Public Service Commission in the field of Geology from time to time.
e) Editor-in-Chief of Journal of Nepal Geological Society from 1980-82
f) Member of Committee to draft a proposal for Organising a Water Resources Institute under Tribhuvan University of Nepal.

5. MEMBER OF NATIONAL COMMITTEE:

a) Member of National Resources Conservation Commission.
b) Member of Coordinating Committee in Karnali (Chisapani) Multipurpose Project.

6. TECHNICAL EXPERT:

a) Landslide at Kulekhani Reservoir.
b) Flood Impacts to Sunkosi, Trisuli and Devighat Hydro Electric Projects.
c) Member Committee to find Causes of Failure of Phewa Dam and non-functioning of Chapakot Tar Irrigation Project.
d) Member of Committee to Investigate Groundwater Quality and Quantity in Kathmandu Valley.
e) Consultant to Agriculture Projects Services Centre in the field of Groundwater of Western Terai in Tube Well.
7. SUPERVISION WORK:
   a) Local Supervisor for two German students for Ph.D. work in Geology of Nepal from the University of Erlagen in 1988.
   b) Local Supervisor for M.Sc. students from Erlagen University in 1987.
   c) Local Supervisor for M.Sc. work in Groundwater for American students from Syracuse University of USA.
   d) Supervisor for one Nepali student for Ph.D. work under Tribhuvan University.

9. AWARD OF DISTINCTION:
   a) "Mahendra Vidya Bhusan" Medal of Nepal for academic achievement.
   b) "Gorkha Daksin Bahu" 3rd order Medal for meritorious work in developing Groundwater Resources of Nepal.
   c) Appointed as life long Academician to Royal Nepal Academy of Science and Technology (RONAST) for contribution in science and technology.

10. PUBLICATIONS:

<table>
<thead>
<tr>
<th>Books</th>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Geology of Nepal</td>
<td>1973</td>
<td>189</td>
</tr>
<tr>
<td>b) Groundwater Resources of Nepal</td>
<td>1974</td>
<td>140</td>
</tr>
<tr>
<td>c) Natural Resources of Pokhara Valley</td>
<td>1975</td>
<td>106</td>
</tr>
<tr>
<td>d) Landslides and Soil Erosion in Nepal</td>
<td>1976</td>
<td>93</td>
</tr>
<tr>
<td>e) River Systems of Nepal</td>
<td>1977</td>
<td>214</td>
</tr>
<tr>
<td>f) Natural Resources of Nepal</td>
<td>1978</td>
<td>271</td>
</tr>
<tr>
<td>g) Nepal and Nepalese</td>
<td>1979</td>
<td>175</td>
</tr>
<tr>
<td>h) Water and Energy Resources of Himalayan Block (Bhutan, Nepal, Bangladesh, Pakistan and India)</td>
<td>1983</td>
<td>477</td>
</tr>
<tr>
<td>i) Natural Hazards and Man-Made Impacts in Nepal Himalaya</td>
<td>1989</td>
<td>150</td>
</tr>
<tr>
<td>j) Geology of Nepal Himalaya &amp; adjacent countries</td>
<td>1990</td>
<td>470</td>
</tr>
<tr>
<td>k) Engineering Challenges in Nepal Himalaya</td>
<td>1991</td>
<td>200</td>
</tr>
<tr>
<td>l) Mineral Resources of Nepal</td>
<td>1995</td>
<td>142</td>
</tr>
<tr>
<td>n) Shallow (Phreatic) Aquifers of Nepal</td>
<td>1995</td>
<td>272</td>
</tr>
<tr>
<td>o) A treatise Resources of Nepal</td>
<td>1987</td>
<td>493</td>
</tr>
</tbody>
</table>

11. PUBLISHED PAPERS:

   a) Partial Drought Condition in Nepal Hydro-Science London.
   b) Geological Studies in Nepal Himalayan Geology, India
   c) Stratigraphy of Nepal Stratigraphy of Himalaya, India
   d) Geotectonics of Kathmandu Block J. of Nepal Geological Society
   e) Integration of Surface Water and Groundwater as a Necessity of Nepal ICID Delhi
   f) Chemical Pollution of Soil and Groundwater in the Kingdom of Nepal International Symposium on Groundwater Monitoring Dresden G.D.R.
Bio-Data of Hon. Members

g) Oil Investigation in Nepal
h) The Problem of Sediment Load in the Development of Water Resources
i) Nepal’s Hydro schemes progress and plans
j) Developing Nepal’s water (Joint paper with Dr. H.M. Shrestha)
k) Energy and Environment and Nepal
l) Overview of Nepal’s energy sources and environment

ESCAP
Mountain Research Development in Nepal
Water power dam construction UK
Electricity International UK
Ambio Sweden
Atmospheric Environment UK

12. CONTRIBUTIONS (as a Coordinator and Reviewer)

a) Soil Erosion and Sedimentation in Nepal Himalaya
b) Glacial Lake Outburst Flood in Nepal
c) Report on Sino-Nepal Joint Expedition to Glacial Lake in Tibet.
d) Rock Mechanics Seminar held in Kathmandu.
e) Earthquake and its Implication in Civil Structures held in Kathmandu.
f) Soil Erosion Sedimentation in Nepal Himalaya held in Kathmandu.
g) Reviewed landslides papers of India and Pakistan for ICIMOD

IDRC, WEC and ICIMOD
IDRC

13. SERVICE RECORDS:

May 9th 1988 - Nov. 7, 1992 (Retired from HMG Service)

Actg. Executive Secretary of Water and Energy Commission responsible for management and coordination of the six Directorates of Water and Energy Commission Secretariat, in particular as an Executive Secretary, the following contributions were made:

- Mostly organizing and gearing up the six divisions (data), water resources, institution and manpower, energy, economics and international law.
- Systematise the administrative procedures in line with HMG rules. Decentralized the system in order to make each directorate most effective.
- Plans and programmes were developed in such a fashion that they were achieved in time. Budget were well articulated so that there is no discrepancy between budget and programme.
- Distinct contributions in the field of water and energy resources have attracted even international Agencies such as IBRD and ADB Manila to water and energy commission either as a reference point of data or advice on certain specific code. Sometimes even they requested the Secretariat to be an executive agency for their specific water and energy related studies in Nepal.
- Overall responsibility in the management, administration and proper conduct of Management and Improvement of Farmers' Irrigation Systems in the Sindhupalchok District of Nepal. This project was assisted by Ford Foundation, in which IIMTs contribution was also immense.
- Management of technical assistance of WECS from Candian International Agency (CIDA) in Water and Energy Sectors.
We Pledge to Dedicate
our Professional Services to Nepal
by Providing Multifaceted Services
in
- Rural Infrastructure Development Services
- Engineering Services
- Geotechnics, Bio-Engineering & Soil Conservation
- Small Hydropower & Rural Electrification
- Ropeway Studies
- Socioeconomics Studies
- Environmental Studies
- Management Consultancies

ITECO Nepal (P) Ltd.
P.O. Box 2147, Min Bhawan, Kathmandu, Nepal
Tel: 482788, 482385, 483153, Fax: 482298
Email: ITECO@mos.com.np
II. Mr. Puspa Bhakta Malla

नाम : पुस्पभक्त मल्ल
जन्म तिथि : वि.सं. १९७० माघ
ठेगाना : र-२-२ काठमाडौं-२, हिमलीबार २१/५३५ वाडा नं. ३२
जन्मस्थल : कवाठोक, खोमातोल, भक्तपुर
पिता : श्री विजयभक्त मल्ल (मध्यमस्तरको जीविकोपार्जन)
शिष्या : निम्न माध्यमिक विद्यालय, भक्तपुर
माध्यमिक विद्यालय (दरवार हाइस्कूल)
अभिवादनको श्री सु. कृष्ण गोपाल सार्को सौजन्यवाद उहाँको घरमा, भू.पू. बडा काजी श्री मरिचमान सिहबाट बरोबर आर्थिक सहयोग गरिएको उद्देष्याङ्क

विभागमा विद्यार्थी (अध्ययन) कलेजमा इंटरमेडियट साइडको अध्ययन
1994 सालमा पाटन विश्वविद्यालयबाट आई.एस.सी. पास

वराहाली हिन्दी विश्वविद्यालयमा खानी विषय (Mining Engineering) को स्तरको स्नातक अध्ययन अधिक पश्चात 1998 सालमा दोभी श्रेणीमा उत्तीर्ण

सेवा : निर्देशक

1998 सालमा ६ महिनामा म्यादिमा कार्यमा भर्ने (कार्यमा म्यादि)
1999 सालदेखि स्थायी सहायक अभियंता (Engineer) खानी अडबा
2006 सालदेखि स्थायी सहायक अभियंता (Engineer) खानी अडबा
2009 सालदेखि स्थायी सहायक अभियंता (Engineer)
2009/०० सालमा संयुक्त राज्य अमेरिकाका प्रशिक्षण
2012 सालदेखि अभियंता (Engineer)
2014 सालमा १ महिनामा सरकारको सौजन्यपूर्ण नियन्त्रणमा भू.पू. निर्देशक क. खुर्पा नरसिंह रागाको नेतृत्वमा भित्रिन्य खानी तथा खानीजन्य उद्योगहरूको निरीक्षण गरिएको श्रमण
2014 सालदेखि कार्यमा सुकार्य निर्देशक खानी विभाग
2016 सालमा स्थायी निर्देशक खानी विभाग
2021 सालमा परिचय सार्थकर्तौ नियन्त्रणमा नियन्त्रणमा बलिन सहरमा खानी तथा सुरक्षा नियोजन विभागको १ महिनाको सेमिनारमा सहभागी
2023 सालदेखि नोकरी ३३ वर्ष १ महिनामा पुरानोले सेवाबाट निवृत्तिभरण पाई गरी सरकारमा नावस्पर्धक परमा पुनः सरकारी सेवा गरी पाई गरी अवकाश
2025 सालमा खानी सम्बन्धी निजी क्षेत्रमा सेवा
2029 देखि २०२२ सम्म साइटरामा दुःख खानी उद्योग। हाल खानी रोकका।
You name it - We do it

DRILLING

FOR

DEEP WATER WELLS
SHALLOW WATER WELLS
NATURAL GAS WELLS
PILING WORKS

BOULDERS OR SOFT SOIL - EQUALLY EASY FOR US

Best Wishes and Hearty Felicitations on Happy New Year 2055

NADCO
NATIONAL DRILLING COMPANY (P) LTD.
NAYA BANESHWOR
P.O. BOX 2874, KATHMANDU
TEL.: 223580, 224760 • FAX: 977-1-226088
Obituary

Dr. Chandra Kant Sharma (1936-1998)

Dr. Chandra Kant Sharma died in January, 1998.

Dr. C.K. Sharma was born on March 13, 1936. Late Sharma had obtained B.Sc. (Hons.) in Applied Geology from Indian School of Mines, Dhanbad, India and M.Sc. in Applied Geology from Indian School of Mines, Dhanbad, India in 1958. He had received his Ph.D. degree from Aligarh Muslim University, India in 1962. Late Sharma also received various other trainings in mineral and groundwater exploration techniques.

Late Sharma had made great contribution in the development of Geology of Nepal. He was the only Nepalese geologist who had written books on geology and groundwater resources of Nepal. In addition to a number of professional papers in national and international journals, he had published 15 books on geology, groundwater, hydrology, engineering geology and mineral resources of Nepal.

Late Sharma had worked in many government offices starting from the Department of Geology and Mines to Department of Irrigation to Water and Energy Commission Secretariat (WECS). He was Acting Executive Secretary of WECS, when he was retired from HMG service in November 7, 1992.

Besides his government service, he had made significant contribution in development of Geological sciences. He was the Member of Subject Committee on Geology of the Tribhuvan University. He was visiting professor of the Central Department of Geology, Kirtipur Campus, Tribhuvan University.

Late Sharma was life-long Academician of the Royal Nepal Academy of Science and Technology (RONAST). He had also received “Gorkha Dakshin Bahu” 3rd order Medal for meritorious work in developing Groundwater Resources of Nepal. He was also member of National Resources Conservation commission and Coordination committee in Karnali (Chisapani) Multipurpose Project.

Late Sharma had made a big contribution towards the development of the Nepal Geological Society. He was the founder and life member of the Nepal Geological Society. He had been the Editor-in-Chief of the Journal of Nepal Geological Society for a number of years.

The Nepal Geological Society expresses its deepest sorrow at the sad demise of Dr Chandra Kant Sharma.

★★★
SUB STRUCTURAL CONSULT (P.) LTD.

Consulting Engineers

EXPLORATORY DRILLING & LABORATORY SERVICES
Phone No.: 226451 Fax No.: 977-1-228763
* P. O. Box No.: 3519, New Baneshwor,
Kathmandu, Nepal

We provide services in
- Roads
- Bridges
- Water Supply
- Small Hydropower
- Irrigation
- Environmental Study
- Public Health & Sanitation
- Socio-Economic Study
- Feasibility Study
- Exploratory Drilling
  - Pile Footing
  - Waterwell Drilling
  - Foundation Investigation
  - Landslide Investigation

We are equipped with
- Truck Mounted Drilling Machine
  45 HP (American) Deep Tubewell
  Boring of 300m capacity.
- Acker Drilling Rig of 200m
  Capacity
- Kano 100 T. Percussion cum
  Rotary Drilling Machine 3 nos. of
  100m capacity each.
- Wire Line Drilling Facility
- Well Equipped Soil Lab.
- Well Equipped Concrete Lab.
- Pavement Investigation Equipment
Frequently Asked Questions on Earthquake
(Facts & Figures)

1. What is the definition of an earthquake?
An earthquake is the sudden, sometimes violent movement of the earth's surface from the release of energy in the earth's crust.

2. How many earthquakes happen each year?
There are over a million quakes annually, including those too small to be felt.

<table>
<thead>
<tr>
<th>Description</th>
<th>Magn.</th>
<th>Freq. / year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great</td>
<td>8.0+</td>
<td>1</td>
</tr>
<tr>
<td>Major</td>
<td>7.0-7.9</td>
<td>18</td>
</tr>
<tr>
<td>Large (destructive)</td>
<td>6.0-6.9</td>
<td>120</td>
</tr>
<tr>
<td>Moderate (damaging)</td>
<td>5.0-5.9</td>
<td>1,000</td>
</tr>
<tr>
<td>Minor (damage slight)</td>
<td>4.0-4.9</td>
<td>6,000</td>
</tr>
<tr>
<td>Generally Felt</td>
<td>3.0-3.9</td>
<td>49,000</td>
</tr>
<tr>
<td>Potentially Perceptible</td>
<td>2.0-2.9</td>
<td>300,000</td>
</tr>
<tr>
<td>Imperceptible</td>
<td>&lt;2.0</td>
<td>600,000+</td>
</tr>
</tbody>
</table>

Per month ... Approximately 80,000
Per day ... Approximately 2,600
Per minute ... Approximately 2
Per second ... Approximately 1 every 30 secs.

4. How deep do earthquakes occur in the World?
Earthquakes occur in the crust or upper mantle which ranges from the surface to about 800 kilometers deep.

5. How much energy is released in an earthquake?
Earthquakes release a tremendous amount of energy, as shown below

<table>
<thead>
<tr>
<th>Magn.</th>
<th>Energy Released (TNT Equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>6 tons</td>
</tr>
<tr>
<td>5.0</td>
<td>199 tons</td>
</tr>
<tr>
<td>6.0</td>
<td>6,270 tons</td>
</tr>
<tr>
<td>7.0</td>
<td>199,000 tons</td>
</tr>
<tr>
<td>8.0</td>
<td>6,270,000 tons</td>
</tr>
<tr>
<td>9.0</td>
<td>99,000,000 tons</td>
</tr>
</tbody>
</table>

6. Where did the largest known earthquake occur?
A magnitude 9.5 earthquake in Chile in 1960 was the largest known earthquake and resulted in over 6,000 deaths.

7. What was the greatest number of people killed in one earthquake?
An earthquake in China in 1556 killed approximately 830,000 people

8. What does an earthquake feel like? How long does the ground shake?
Generally, during an earthquake you will feel a swaying motion, then a slight pause, followed by a more intense rolling or jerking motion. The duration of the shaking depends on the earthquake's magnitude, the distance from the epicenter, and the geology of the ground. Shaking at a site with soft sediments, for example, can last 3 times as long as shaking at a stable bedrock site such as one composed of granite.

9. At what magnitude will damage begin to occur?
Earthquakes can be described in two ways: by magnitude and intensity. Magnitude is often called 'Richter Scale' although other magnitude scales are more commonly used now. Magnitude is a measure of the amount of energy released at the focus (point of origin) of an earthquake. Intensity refers to the effect of an earthquake. Intensity is measured by the Modified Mercalli Intensity Scale, using Roman numerals I-XII. Magnitude is mathematically calculated, intensity is based upon observation. While a single number expresses the magnitude of an earthquake, intensity of a earthquake varies by location. Factors affecting the intensity of an earthquake on an area include magnitude, distance from the focus, and local geology. The approximate relationships between magnitude and intensities:

<table>
<thead>
<tr>
<th>Mag</th>
<th>Int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0-3.9</td>
<td>I-II</td>
</tr>
<tr>
<td>4.0-4.9</td>
<td>III-IV</td>
</tr>
<tr>
<td>5.0-5.9</td>
<td>V-VI</td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>VII-VIII</td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>IX-X</td>
</tr>
<tr>
<td>8.0-8.9</td>
<td>XI-XII</td>
</tr>
</tbody>
</table>

10. What should I do during an earthquake?

**IMMEDIATE ACTION**

**Indoors:**
- Do not rush outside. Get your family into doorways, under tables, or if they are bedridden, under their beds, keep away from windows and chimneys.

**Outdoors:**
- Keep clear of buildings, high walls or dangling electric wires. If you are in a city, seek shelter under archways or doorways but do not re-enter damaged buildings.

**Driving:**
- If you feel the earthquake when riding in a car or bus, ask the driver to pull over and stop. Stay inside.
- If you feel the earthquake when riding in a car or bus, ask the driver to pull over and stop. Stay inside the vehicle.

For further details, please contact:
National Society for Earthquake Technology-Nepal
National Member for International Association of Earthquake Engineering (IAEE)
Kha. 2-731, Mahadevsthan, PO. Box: 13775, Kathmandu, Nepal
Tel. 977-1-474 192, Fax: 977-1-490 943, e-mail: nset@mos.com.np

Published by: Nepal Geological Society, P.O. Box 231, Kathmandu, Nepal
Email: ngs@wlink.com.np
Best Wishes and Hearty Felicitations on the Auspicious Occasion of Happy New Year 2055

SILT Consultants (P.) Ltd.
Battisputali (Baneshwor), Kathmandu, Nepal
P.O. Box 2724, Telex: 2314 RAITRA NP
Cable: SILCON, Fax: 977-1-227431
Phone: 473573, 470866

We are specialized in

- Feasibility Study and Preliminary Planning
- Land use survey and mapping
- Survey and design of foundation; transportation, irrigation and water
- In-situ and laboratory testing of rock, soil and construction materials including drilling
- Slope stability analysis and erosion protection works
- Geological survey, investigation and mapping
- Economic analysis and cost estimating
- Agricultural and socio-economic studies
- Environmental engineering and impact evaluation
- Preparation of tender documents, specification and training and maintenance programme
- Construction management and supervision of construction works etc.